
Dipl. Eng. Ciprian Pungilă, M. Sc.

Western University of Timisoara

ciprian@ciprianpungila.com

StudIT – 1-3 April, 2011

• What Is Malware?

• Evolution of Malware

• Technical Overview

• Static Analysis

• Dynamic Analysis

• Code Obfuscation

• Protection Methods

• Tools

• Exploit Frameworks

• Conclusion

Quick Contents

What Is Malware?

Evolution Of Malware (1)

Email virus + social engineering: Xmas Exec
Large scale pandemics: Morris worm
Infected 10% of the Internet.

Sophisticated engineering: Conficker
Use of Crypto.
Social Networks/cell phone worms.
Stuxnet,…

Evolution Of Malware (2)

Malware incidents are
rising dramatically:
• increase of infection vectors
• increase in the complexity of

botnet structures

From Biology: Connected World Gives Viruses The Edge
“as human activity makes the world more connected,
natural selection will favor more virulent and
dangerous parasites."

Technical Overview

Boot Sector Viruses
First sector of disk executed at boot

Worked well back when people traded floppies

• Could come back; “autorun.inf” on CDs

Boot Data Virus Data Boot

Executables
Attach itself to executable

• Virus executes before normal

executable is run

Can be multi-platform

Popular method, esp. when

BBS’s used to trade software

• Also has infected commercial

software distributions

Still in use today

Executable

Executable

Virus

Static Analysis
01001010100101010
10101010011010101
01001010100101010
10101010011010101
01001010100101010
10101010011010101
01001010100101010
10101010011010101
10101010011010101
01001010100101010
10101010011010101

.exe

Typically a stripped
binary with no
debugging information.

In the case of malicious
code, it is often obfuscated
and packed

Often has embedded suicide logic and
anti-analysis logic

• What does the malware do
• How does it do it
• identify triggers
• What is the purpose of the

malware
• is this an instance of a known

threat or a new malware
• who is the author
• …

Challenges:
• lack of automation
• time-critical analysis
• labor intensive
• requires a human in the loop

Dynamic Analysis

• Techniques that profile actions of binary at runtime

• More popular

• CWSandbox, TTAnalyze, multipath exploration

• Only provides partial ``effects-oriented profile’’ of

malware potential

…while on the other hand…

Static Analysis

• Can provide complementary insights

• Potential for more comprehensive assessment

Code Obfuscation

To defeat signature based detection schemes

• Polymorphism, metamorphism: started appearing in viruses of the

90’s primarily to defeat AV tools

To defeat Dynamic Malware Analysis

• Anti-debugging, anti-tracing, anti-memory dumping

• VMM detection, emulator detection

To defeat Static Malware analysis

• Encryption (packing)

• API and control-flow obfuscations

• Anti-disassembly

The main purpose of obfuscation is to slow down the security

community

Eureka Framework Workflow

Eureka’s Model

Coarse-grained
execution
tracing

NtTerminateProcess
NtCreateProcess

Eureka

Statistical
bigram analysis

bigram.

Static Analysis of Executable Code

• Find patterns of malicious code inside the executable

• Various approaches possible, most of them inefficient

• Simple-pattern searching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore,

etc.

• Repeated parsing of the input data: low performance

• Best approach: multiple-pattern searching

• Data structures + Formal languages + Graph theory

• Known approaches: Aho-Corasick, Commentz-Walter, RegEx extensions,

etc.

• Performance vs. memory-usage

• e.g. 100,000 patterns in a lookup tree => 4GB of RAM used; an optimized

version uses 128 MB

• Multi-core development

Dynamic Analysis of Executable Code

• System-call analysis

• Analysis of disassembled output

• Control flow graphs (CFG): http://en.wikipedia.org/wiki/Control_flow_graph

• Control dependence graphs (CDG):
http://www.grammatech.com/research/papers/staticAnalysis/imgSlides/sld021.html

• Flow dependence graphs (FDG):
http://www.grammatech.com/research/papers/staticAnalysis/imgSlides/sld022.html

• Program dependence graphs (PDG):
http://www.grammatech.com/research/papers/staticAnalysis/imgSlides/sld023.html

• System dependence graphs (SDG):
http://www.grammatech.com/research/papers/slicing/slicingWhitepaper.html

• Intraprocedural & interprocedural slicing algorithms (e.g. Weiser’s backward slicing)

• System-call sequence analysis

• Several approaches available (e.g. Markov chains, statistical analysis, neural networks,
weight-analysis, etc.)

• Classify program based on detected behavior

How Do We Protect Ourselves?

• Avoid creating bugs

• Write correct code

• Change environments for detecting errors

• Use tools to exploit effectiveness

• Find our own bugs (ethical hacking?)

• Use appropriate tools

• Languages that are type-safe and ensure bound-checks (e.g. Java,

Smalltalk, ML, Perl)

• Subsections of languages and/or code standards (e.g. C++ with

smart pointers, std::strings, STL containers)

• Performance vs. correctness (e.g. bounds checking in Pascal vs. C)

Tools

LibSafe

• http://www.research.avayalabs.com/project/libsafe/

• Intercept calls to functions with known problems and
perform extra checks

• Source is not necessary

StackGuard and SSP/ProPolice

• Place “canary” values at key places on stack

• http://en.wikipedia.org/wiki/Stack-smashing_protection

• Terminator (fixed) or random values

• ProPolice patch to gcc

Run-Time & Compile-Time Analysis

BoundsChecker and related tools
• http://www.compuware.com/products/devpartner/

• Augments code with bounds checking code

• Coverage Analysis

Rational Purify
• http://www-306.ibm.com/software/awdtools/purify/

Software Fault Injection

Hardware fault injection well used and

understood

• Software fault injection still emerging

• Active research area at CSL

Identify input areas

• Generally network, but could also be files,

environment variables, command line

Inject bad inputs and see what happens

Software Fault Injection – Model

ServerClient

Fault
Injector

Auditor

Other Techniques

Fuzzing

• A variant of the fault injection model

• Create “fuzzed” input to cause errors

• ShareFuzz

• Intercept all getenv() calls to return very, very long strings

SPIKE

• An input language for creating variant network packets

• From ethereal output, make it easy to express new packets

• a_binary(“00 01 02 03”)
Data: <00 01 02 03>

• a_block_size_big-endian_word(“Blockname”);
Data: <00 01 02 03 00 00 00 00>

• a_block_start(“Blockname”)
a_binary(“05 06 07 08”)
Data: <00 01 02 03 00 00 00 00 05 06 07 08>

• a_block_end(“Blockname”);
Data: <00 01 02 03 00 00 00 04 05 06 07 08>

Exploit Frameworks

Metasploit

•http://www.metasploit.com/index.html

Canvas

•http://www.immunitysec.com

Core Impact

•http://www.coresecurity.com/products/c

oreimpact/index.php

• No 100% accurate methods for analysis

• Godel’s incompleteness theorem

• Turing’s halting-problem

• Exponentially-increasing databases cause problems in

static analysis

• Perpetually evolving polymorphic and metamorphic

techniques disrupt heuristic/dynamic analysis easily

• New proactive methods of defense emerge embedded

in kernels of OSs (e.g. PatchGuard in Vista, etc.)

….questions? ☺

Bibliography

• Malware and Protections, CyberSecurity Lab, 2006

• Reverse Engineering Malware, SRI International, Hassen Saidi, Computer Science

Laboratory

• Hybrid Analysis and Control of Malware, Kevian A. Roudy, Barton P. Miller

• Reverse Engineering Malware, Lenny Zeltser, Spring 2010

• Eureka: A Framework for Enabling Static Malware Analysis, Wang Zhi, The 13th European

Symposium on Research in Computer Security (ESORICS) conference 2008

• Malware Analysis, Jaimin Shah, Krunal Patel, Vishal Patel, Shreyas Patel, Georgia

Institute of Technology, School of Electrical and Computer Engineering

• Malware Analysis and Playpen Recuritment Talk, Alan S.H. Lam

• COEN 252 Computer Forensics - Investigating Hacker Tools

• Malware and Exploit Enabling Code, CS498IA, Spring 2007

