

OPERATING SYSTEMS

#2
After A.S.Tanenbaum, Modern Operating Systems, 3rd edition

Uses content with permission from Assoc. Prof. Florin Fortis, PhD

Operating

systems

structure
INTRODUCTION

 Monolithic systems – basic structure:
 A main program that invokes the requested service procedure.

 A set of service procedures that carry out the system calls.

 A set of utility procedures that help the service procedures.

OPERATING SYSTEM STRUCTURE

MONOLITHIC SYSTEMS

OPERATING SYSTEM STRUCTURE

MONOLITHIC SYSTEMS

A simple structuring model for a monolithic system.

Two largely used operating systems have been
characterized by a kind of monolithic structure:

1. The MS-DOS operating system;

 is an OS with a weak structure, without a clear
delimitation of interfaces or the levels of
functionality.

MS-DOS offer a simple approach for the I/O devices:
every application can directly access every I/O
device.

Also, MS-DOS always ignored a hardware issue at
processor level: the dual mode of operation; keeping
the OS at the level of 8088/80286 processors.

OPERATING SYSTEM STRUCTURE

MONOLITHIC SYSTEMS. MS-DOS

 Early UNIX OS

 The first UNIX OS are characterized by a (limited) monolithic

structure.

 One can identify two distinct components: the OS kernel and system

applications.

 However, the services offered by these two components are very

large, essentially the same, from different points of view.

OPERATING SYSTEM STRUCTURE

MONOLITHIC SYSTEMS. UNIX

 Layered systems offer a clearer construction and an easier

administration of the operating system, with several

drawbacks:

 The definition of the different layers must be clearly made prior to

the design of the entire OS;

 Making system calls from higher layers requires a lot of overhead in

order to identify the target layer and the original layer for the system

call.

OPERATING SYSTEM STRUCTURE

LAYERED SYSTEMS.

Structure of the THE operating system

OPERATING SYSTEM STRUCTURE

LAYERED SYSTEMS. THE

 Virtual machines have been developed starting from early

time-sharing machines:

 A virtual machine should offer an extension of the machine, by a

convenient interface;

 A virtual machine should offer the basic services of

multiprogramming.

 In the same time, the virtual machine should offer a clear separation

between these two functions.

OPERATING SYSTEM STRUCTURE

VIRTUAL MACHINES

OPERATING SYSTEM STRUCTURE

VIRTUAL MACHINES. VM/370

The structure of VM/370 with CMS.

 By a VM/370 virtual machine, the very basic requirements are

met. Such a machine should, however, respond to some

distinctive allocation issues:

 In order to avoid conflicts due to the usage of I/O devices, it should

be necessary to develop virtual devices, similar with the original

devices, managed at a basic level of the OS.

 Theoretically, virtual machines should run only in the user space.

Thus, the virtual machine should run its own virtual user mode and

virtual kernel mode. When solving a system call, the virtual machine

should switch first to its virtual kernel mode, and then trigger the

same switch (this time to the real kernel mode) in the monitor of

virtual machines.

OPERATING SYSTEM STRUCTURE

VIRTUAL MACHINES

OPERATING SYSTEM STRUCTURE

VIRTUAL MACHINES. MODERN

VIRTUAL MACHINES

(a) A type 1 hypervisor.

(b) A type 2 hypervisor.

 While virtual machines are offering exact copies for the

physical machine, in this situation we have copies of the

original systems, but only with a part of the original

resources.

 Such a structure is based on a central application (named exo-

kernel/micro-kernel), running in kernel mode, whose main

task is to allocate resources to the virtual machines and to

manage the allocated resources.

OPERATING SYSTEM STRUCTURE

MICROKERNELS

OPERATING SYSTEM STRUCTURE

MICROKERNELS. MINIX 3

Structure of the MINIX 3 system.

 In this model the services of the OS are offered

through specialized processes, which are able to

handle only certain type of requests.

 Parts of the operating system are being implemented directly

in user processes (client processes).

 The OS kernel should be more likely oriented through

communication control between the client and server

processes.

 Theoretically, all the processes run in user space,

with the exception of the kernel. Practically, some of

the OS functions can be offered only in kernel mode.

 The client-server model can be easily adapted for

usage in a distributed environment.

OPERATING SYSTEM STRUCTURE

CLIENT-SERVER

OPERATING SYSTEM STRUCTURE

CLIENT-SERVER MODEL

The client-server model over a network.

Protection

mechanisms INTRODUCTION

 The very first computing systems were single -user systems,

completely controlled by the unique user of the system.

 Once the resident monitor appeared, some simple memory

protection mechanisms were required.

 Resource sharing and spooling issued new protection

problems, due to the common storage space that can be used.

INTRODUCTION

PROTECTION MECHANISMS

 With multiprogramming and time-sharing, there is the

possibility that multiple processes and/or users exist

simultaneously in the system, with more protection issues to

be solved.

 Typical execution errors are identified at hardware level and

are managed under the control of the OS.

 The affected hardware component issues some specialized

instructions (traps) to the OS.

 The control is then transferred to the OS by using the same

mechanism as for interrupts, and by using again the interrupt vector.

INTRODUCTION

PROTECTION MECHANISMS

Dual mode of operation

 Protection mechanisms are required in order to protect

programs and data against malfunction of other programs.

They are also required for the OS itself.

 A possibility for this type of protection is offered by the dual

mode of operation.

 The dual mode of operation was initially implemented at software

level, in order to limit the access to certain services accessible only

to the OS.

 Later, the dual mode of operation was offered at hardware

level, via a specialized bit (the mode bit), controlled only by

the OS.

INTRODUCTION

PROTECTION MECHANISMS

 During the boot operation, the computing system is running

into monitor mode. The OS itself is doing its job in the

monitor mode. All user processes are using only the user

mode.

 Each interrupt or trap is accompanied by an immediate switch

to the monitor mode, after the OS obtained the control of the

system.

 The OS needs this mode in order to solve the tasks related with the

interrupt/trap instruction. Observe that the OS always runs in monitor

mode.

 The OS should switch back to user mode once the control is

returned to user process.

after A.S.Tanenbaum, Modern Operating Systems,

3rd edition

INTRODUCTION

THE DUAL MODE OF OPERATION

 The dual mode of operation is used as a protection

mechanism by specifying a set of processor instructions that

can be executed only in this mode of operation (privileged

instructions). These instructions are meant only to the OS.

 The access to privileged instructions is made at hardware

level, each attempt to use such an instruction being

considered as an execution of an illegal instruction. Also, a

trap instruction is issued to the OS in order to signal the

situation.

INTRODUCTION

THE DUAL MODE OF OPERATION

 If an OS cannot offer a dual mode of operation, user

processes could be able to access or even modify areas that

are meant only to the OS.

 This kind of behavior can affect the functionality of the OS, or

it could be possible that processes take the control of the OS.

INTRODUCTION

THE DUAL MODE OF OPERATION

I/O protection

 The computing system define I/O operations as being

privileged instructions, accessible only in monitor mode.

 Because interrupts are the preferred way to solve I/O

operations, the interrupt mechanism could offer the

possibility to gain the control over the system by a user

process.

 An interrupt is solved by using the interrupt vector. If a

process is permitted to alter an entry from this vector, then it

could make the OS to pass the control over the system

without switching back to the user mode.

 This problem is solved by making all the operations that

affect the interrupt vector as being privileged instructions.

INTRODUCTION

PROTECTION MECHANISMS

Memory protection

 Interrupt routines also run in monitor mode. These offer

another easy -to-break point in the system.

 The same solution can be used in order to avoid disasters: make

them protected!

 This kind of protection for both interrupt vector and interrupt

routine is effective only if there is a good protection

mechanism for memory, too.

 This is because all interrupt information are kept in the memory by

the OS.

 In order to have an effective memory protection mechanism,

we need a hardware mechanism eventually based on the base

and limit registers.

INTRODUCTION

PROTECTION MECHANISMS

 The protection is realized at processor level, comparing all the

generated addresses with the values from registers.

 Each attempt to access kernel (monitor) memory or other

user’s memory should be immediately sanctioned by issuing a

(fatal) trap instruction, treated as a fatal error.

 The base and limit registers must be protected by offering

instructions to alter the values stored here only in monitor

mode.

 The OS should be the only application able to alter these

registers and access information from the entire memory

space. This requirement is needed in order to enforce some

memory management tasks.

INTRODUCTION

MEMORY PROTECTION

Processor protection

 Processor protection requires a dif ferent approach. This is

because the OS, during its execution, offer periodically the

processor to (user) processes.

 The solution, inspired by time-sharing, is to use a timer. This

is set-up for a specified amount of time, fixed or variable.

 When using a variable amount of time, there is a need for

another timer with fixed amount of time and a counter, that is

decreased at every tick. An interrupt is issued only when the

counter reaches the 0 value.

 The functioning of the counter and of the timer should be

protected by private instructions.

INTRODUCTION

PROTECTION MECHANISMS

 The OS must assure that the timer is being set -up every time

the control is offered to another process.

 The treatment for the timer interrupt depends on the policy of the OS:

it could be a fatal error, a simple context switch or a request for

supplemental time, if possible.

 Timers can be used as a simple mechanism for specifying the

total time of execution, or the duration of resource usage.

 Another frequent usage of timers is in the case of time -

sharing systems, where they are used to signal the end of a

slice of time.

 All timer operations should be implemented as private

operations.

INTRODUCTION

PROCESSOR PROTECTION

Types of

operating

systems
INTRODUCTION

 Mainframe operating systems

 Server operating systems

 Multiprocessor operating systems

 Personal computer operating systems

 Handheld operating systems

 Embedded operating systems

 Sensor node operating systems

 Real-time operating systems

 Smart card operating systems

TYPES OF OPERATING SYSTEMS

Operating

systems

concepts
INTRODUCTION

1. Processes

2. Address spaces

3. Files

4. Input/Output

5. Protection

6. The shell

7. Ontogeny recapitulates phylogeny

 Large memories

 Protection hardware

 Disks

 Virtual memory

OPERATING SYSTEMS CONCEPTS

 Offer the interface between processes and the operating

system.

 Are usually offered as instruction in an assembly language, or

as instructions in a higher level language.

 Even in the first case, system calls could be realized from higher level

languages.

 The entire function of the operating system is based on

system calls: usually processes ask for services from the

Operating System through the system calls interface.

OPERATING SYSTEMS CONCEPTS

SYSTEM CALLS

 A process is a running program. For every process there is an

associated address space.

 Process execution is done in a sequential manner, instruction

after instruction: the processor (single core) is able to execute

only one instruction at a time.

 Modern operating systems are using a table of processes in

order to store all the necessary information about processes.

OPERATING SYSTEMS CONCEPTS

PROCESSES

A process tree.

Process A

created two child

processes, B and

C. Process B

created three

child processes,

D, E, and F.

OPERATING SYSTEMS CONCEPTS

PROCESSES

 Process management is realized through specific system

calls, the main program using these calls being the command

line interpretor (the shell).

 For a proper management and security of processes, the

operating system is using dif ferent information (e.g. various

process identifiers) that exist during the entire lifetime of a

process.

OPERATING SYSTEMS CONCEPTS

PROCESSES

 Tasks of the operating system

 Creation and “deletion” of processes;

 Suspension and continuation of processes;

 Process synchronization through specific mechanisms;

 Inter process communication through specific mechanisms;

 Solving deadlocking situations through specific mechanisms.

OPERATING SYSTEMS CONCEPTS

PROCESSES

 Typical system calls for process management

 UNIX processes are based on the fork()...exec() mechanism.

 For Win32 one can use the CreateProcess() call.

 Process termination is made by calling exit() – UNIX or ExitProcess()

– WIN32.

 Waiting for process termination is accomplished by calling wait() –

UNIX, WaitForSingleObject() – WIN32.

 The kill() – UNIX system call offer both a simple communication

mechanism and a way to forcibly terminate a process.

OPERATING SYSTEMS CONCEPTS

PROCESSES. SYSTEM CALLS

 The file system is supported by most of modern OS. By using a

file system, an OS hides the peculiarities of disks or other

secondary storage devices behind a uniform interface.

 The file is the logical unit for storing information in a

computing system.

 A file is, in its simplest definition, just a sequence of bytes.

 Directories (folders) have been developed in order to provide a

simple way for file grouping and organization.

OPERATING SYSTEMS CONCEPTS

THE FILE SYSTEM

 Regularly, there is a tree-like organization of the files in a file

system.

 File accessing rights and file protection are well implemented

in most of the file systems.

 When using a tree-like organization, the files are identified by

using a path name. Notions like current directory (.), parent

directory (..), root directory (/), absolute or relative path name

are common when talking about a tree -like organization.

OPERATING SYSTEMS CONCEPTS

THE FILE SYSTEM

OPERATING SYSTEMS CONCEPTS

THE FILE SYSTEM

A file system for a university department.

 Tasks of the Operating System

 File creation and removal;

 Folder creation and removal;

 Primitives needed in order to handle files/folders;

 Mapping files over secondary storage devices;

 Mounting file systems.

OPERATING SYSTEMS CONCEPTS

THE FILE SYSTEM

OPERATING SYSTEMS CONCEPTS

THE FILE SYSTEM

(a) Before mounting, the files on the CD-ROM are not

accessible.

(b) After mounting, they are part of the file hierarchy.

 File management (system calls)

 The open() – UNIX, CreateFile() – Win32 system calls, used in order

to open a file.

 File creation is offered by open() or creat() – UNIX, CreateFile() –

Win32 system calls.

 One can close a file by using close() or CloseHandle() system calls.

 Read/write file data, by read()/write() or ReadFile()/WriteFile().

 File pointer position can be controlled by lseek() or SetFilePointer()

calls.

 Information about files can be obtained by using the stat() family or

GetFileAttributesEx() calls.

OPERATING SYSTEMS CONCEPTS

THE FILE SYSTEM. SYSTEM CALLS (1)

 Folder management (system calls)

 Even if most of the operating systems offer the same basic treatment

for files and folders, there are specialized system calls/library

functions for folder management:

 Folder creation and removal, by using mkdir()/rmdir(), or

CreateDirectory()/RemoveDirectory() calls.

 Change current (working) directory (folder), by using chdir() or

SetCurrentDirectory() calls.

 Removing a folder entry, by using unlink() or DeleteFile() calls.

OPERATING SYSTEMS CONCEPTS

THE FILE SYSTEM. SYSTEM CALLS (2)

 The main memory is the main repository for programs under

execution.

 The memory offers its own protection mechanisms, used in

order to avoid accidental interaction of stored programs

 Memory management depends on the type of devices that are

offering the necessary storage support.

OPERATING SYSTEMS CONCEPTS

THE MEMORY

Processes have

three segments:

text, data, and

stack.

OPERATING SYSTEMS CONCEPTS

THE MEMORY

 Programs in execution are always stored in the main memory

of the system.

 Tasks of the operating system (main memory)

 To follow memory usage;

 To make decisions about processes to be store in memory;

 Memory allocation and de-allocation.

OPERATING SYSTEMS CONCEPTS

THE MEMORY. MAIN MEMORY

 Other application, or data for programs under execution are

stored (permanently) on secondary storage devices.

 Due to their frequent usage, an efficient management is an

important task for the OS.

 Tasks of the operating system

 Management of free space;

 Space allocation, on request;

 Secondary storage devices scheduling.

OPERATING SYSTEMS CONCEPTS

THE MEMORY. SECONDARY STORAGE

 The command line interpreter (the shell) is one of the most

important applications in an OS. It of fers a basic interface to

the operating system.

 Several operating systems integrate the command line

interpreter in the kernel.

 The tasks and functioning of the shell are “inspired” from the

tasks of the ancient resident monitory.

OPERATING SYSTEMS CONCEPTS

THE SHELL

OPERATING SYSTEMS CONCEPTS

THE SHELL. SKELETON OF A SHELL

 History http://en.wikipedia.org/wiki/History_of_operating_systems

 Haiku Open Source

http://video.google.com/videoplay?docid=236331448076587879

 Gernot Heiser on microkernels

http://www.builderau.com.au/video/soa/Convergence -of-kernel-

philosophies/0,2000064338,22447293p,00.htm

 Linus Torvalds – Green

http://www.builderau.com.au/video/soa/Linux -is-ready -to-go-green-

Linus-Torvalds/0,2000064338,22440588p,00.htm

 Google Operating System: gOS Cloud OS

http://blog.wired.com/gadgets/2008/12/video -gos-cloud.html

 Contiki Small http://www.sics.se/contiki/news/uipv6 -snapshot-

release.html

 gSpeak Data Intensive http://oblong.com/

NEWS IN OS!

http://en.wikipedia.org/wiki/History_of_operating_systems
http://video.google.com/videoplay?docid=236331448076587879
http://www.builderau.com.au/video/soa/Convergence-of-kernel-philosophies/0,2000064338,22447293p,00.htm
http://www.builderau.com.au/video/soa/Convergence-of-kernel-philosophies/0,2000064338,22447293p,00.htm
http://www.builderau.com.au/video/soa/Convergence-of-kernel-philosophies/0,2000064338,22447293p,00.htm
http://www.builderau.com.au/video/soa/Convergence-of-kernel-philosophies/0,2000064338,22447293p,00.htm
http://www.builderau.com.au/video/soa/Convergence-of-kernel-philosophies/0,2000064338,22447293p,00.htm
http://www.builderau.com.au/video/soa/Convergence-of-kernel-philosophies/0,2000064338,22447293p,00.htm
http://www.builderau.com.au/video/soa/Convergence-of-kernel-philosophies/0,2000064338,22447293p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://www.builderau.com.au/video/soa/Linux-is-ready-to-go-green-Linus-Torvalds/0,2000064338,22440588p,00.htm
http://blog.wired.com/gadgets/2008/12/video-gos-cloud.html
http://blog.wired.com/gadgets/2008/12/video-gos-cloud.html
http://blog.wired.com/gadgets/2008/12/video-gos-cloud.html
http://blog.wired.com/gadgets/2008/12/video-gos-cloud.html
http://blog.wired.com/gadgets/2008/12/video-gos-cloud.html
http://www.sics.se/contiki/news/uipv6-snapshot-release.html
http://www.sics.se/contiki/news/uipv6-snapshot-release.html
http://www.sics.se/contiki/news/uipv6-snapshot-release.html
http://www.sics.se/contiki/news/uipv6-snapshot-release.html
http://www.sics.se/contiki/news/uipv6-snapshot-release.html

Computer

hardware

review
INTRODUCTION

 Some of the components of a personal computer

COMPUTER HARDWARE REVIEW

Fetch next

instruction*
Execute*

*Observe that decoding is hidden

inside Fetch and Execute steps

A) Classical model of execution

Fetch next

instruction
ExecuteDecode

B) Simple model of execution (three stages)

SIMPLE MODELS OF EXECUTION

Fetch unit Decode unit
Execution

unit

C) Execution based on units (three stages, pipeline)

Fetch unit Decode unit

Execution

unit

Fetch unit

Fetch unit

Fetch unit

D) Execution based on several units (pipeline)

THREE STAGES OF EXECUTION (PIPELINE)

COMPUTER HARDWARE REVIEW

MULTITHREADED AND MULTICORE

(a) A quad-core chip with a shared L2 cache.

(b) A quad-core chip with separate L2

caches.

COMPUTER HARDWARE REVIEW

MEMORY

A typical memory hierarchy.

The numbers are very rough approximations.

COMPUTER HARDWARE REVIEW

I/O DEVICES

The steps in starting an I/O device and

getting an interrupt

 Interrupt processing

involves taking the

interrupt, running

the interrupt

handler, returning to

the user program

COMPUTER HARDWARE REVIEW

I/O DEVICES

COMPUTER HARDWARE REVIEW

BUSES

The structure of a large Pentium system

