
OPERATING SYSTEMS

#3
After A.S.Tanenbaum, Modern Operating Systems, 3rd edition

Uses content with permission from Assoc. Prof. Florin Fortis, PhD

Basics PROCESSES

A process is a program in execution, including all
its associated values;

A system can hold at the same time several processes,
including the operating system;

 The OS offers the mechanisms needed for process
switch operations, hiding process’ sequential execution
behind the illusion of parallelism;

Multiprogramming is based on the process switch
operation;

 by using the process switch operation, the processor
could be offered alternatively to every process;

PROCESSES

BASICS

 In the case of process switch operation one
should take into account the existing hardware
limits:

 There is only one set of registers are directly used for
execution, even if the processor is able to offer more than
one set of registers.

The OS should use this issue in order to solve
all the context switch operation (saving or
restoring of contexts);

The OS should not make any assumptions
regarding the execution times of the processes.

PROCESSES

BASICS

PROCESSES

BASICS

(a) Multiprogramming of four programs.

(b) Conceptual model of four independent,

sequential processes.

(c) Only one program is active at once

 Events which cause process
creation:

 System initialization.

 Execution of a process creation
system call by a running process.

 A user request to create a new
process.

 Initiation of a batch job.

PROCESSES

BASICS. PROCESS CREATION

 At system initialization time, the OS will create the processes

needed in order to properly use the OS

 E.g. processes that can support user interaction; processes designed

for solving specified tasks.

 In modern OS new processes are able to create other

processes, during their existence.

 There are several reasons for this behavior:

 offering of specialized services;

 offering support for problems solving;

 offering support for the execution of related processes, and others.

PROCESSES

BASICS. PROCESS CREATION

 For interactive systems, user requests can be used in order to

create new processes.

 User interaction is possible by using a command line interpreter;

newly created processes are (usually) instances of system commands

or user programs.

 For batch processing systems, process creation can occur

while transmitting a job to the system, or as a result of a

control card.

 The OS should decide the creation of a new job only if the available

resources are enough for this operation.

PROCESSES

BASICS. PROCESS CREATION

The creation mechanism is as follows:
An existing process issues a system call in order

to create a new process (e.g. the fork() system
call). Some OS limit this possibility to certain
categories of processes.

The OS could be announced, at the same time,
about the need to load (and execute) another
program in the newly created space (e.g. by using
an exec…() system call).

Other operating systems, like Windows OS, could
offer a unique (and complex) function, in order to
solve all the issues at process creation time.

PROCESSES

BASICS. PROCESS CREATION

 Events which cause process

termination:

 Normal exit (voluntary).

 Error exit (voluntary).

 Fatal error (involuntary).

 Killed by another process (involuntary).

PROCESSES

BASICS. PROCESS TERMINATION

 Most of the processes in a OS are characterized by a normal

termination, once a specific system call is issued;

 Fatal errors represent special events during process execution

(such as an invalid file name).

 A process is not able to continue its execution due to a fatal error;

 Exceptions (like division by zero, il legal memory access, null

pointer operations) offer another kind of reasons for process

termination.

 Exceptions can be intercepted and handling. For this kind of events,

process termination can be avoided;

 Forced termination can occur only by a request of another

process, authorized for this kind of requests.

PROCESSES

BASICS. PROCESS TERMINATION

 Different OS offer some mechanisms in order to emphasize

the relationships between processes.

 UNIX systems are based on a parent-child relation for processes, too.

 All the processes are descendants of a unique process, init, that was

created during the system initialization process (traditionally, the PID

– Process ID – value is 1).

 For the Windows OS, the “creator” of a process has a special token

that can be used in order to control the “created” process. However,

in Windows’ philosophy all processes are equal.

PROCESSES

BASICS. HIERARCHIES OF PROCESSES

Process’

states PROCESSES

 The states of a process reflects the main moments
during process execution. Early systems use a 3-
states model:
 “running”

 “prepared”

 “blocked”.

Processes are blocked while waiting for an external
event to occur (such as, an I/O operation, the
activity of a scheduler, and others)

 Each OS implement its own transition schema,
according to system’s policy for process
management.

PROCESS’ STATES

THE MODEL WITH 3 STATES

PROCESS’ STATES

THE MODEL WITH 3 STATES

A process can be in running, blocked, or ready

state.

Transitions between these states are as shown.

 With the classical model one can to get an overview for

process execution.

 As a result of virtual memory techniques, the model with 3 -

states could be modified to offer supplemental states in order

to emphasize the swapping mechanism.

 A blocked process (from memory) could be transferred on the disk,

as a suspended process. Suspended process’s activation can be done

by loading it again in the memory as a “ready to run” process.

 Suspended processes should not be loaded into memory in

another state unless they are scheduled for execution.

PROCESS’ STATES

THE MODEL WITH ONE SUSPENDED STATE

PROCESS’ STATES

THE MODEL WITH ONE SUSPENDED STATE

PROCESS’ STATES

THE MODEL WITH TWO SUSPENDED STATE

From http://www.ksvali.com

UNIX PROCESS’ STATES

Implementatio

n of processes PROCESSES

 The OS permanently keep in memory information about
processes, in a specialized table (the process table).

 Each process in memory or virtual memory is
characterized by an entry in this table.

 The information stored in this table form the PCB
(Process Control Block). This includes information that
define the context of a process:

 Information for file management, such as: UID, GID, file
descriptors, root directory, current (working) directory.

 Memory information: pointers to the segments of the program.

 Specific information: registers, scheduling information, PID,
PPID, PGRP, signals, CPU time(s), and others.

PROCESSES

INFORMATION ABOUT PROCESSES

PROCESSES

IMPLEMENTATION OF PROCESSES

The lowest layer of a process-structured operating

system handles interrupts and scheduling.

Above that layer are sequential processes.

PROCESSES

IMPLEMENTATION OF PROCESSES

Skeleton of what the lowest level of the operating system does when

an interrupt occurs.

Introduction THREADS

 Classical processes are characterized by a single execution,

following only one thread (understood as direction) of

execution. This single thread offers a simple, sequential

execution model.

 Threads offer an extension to the classical model of

processes, by offering parallel execution that are able to run

in the space of a single process, these threads having also a

certain degree of independence.

 Threads are using a limited quantity of information, as

defined in the context of “hosting” process. This limitation

refers only to information that are strictly related with current

execution.

THREADS

INTRODUCTION. CLASSICAL THREAD MODEL

THREADS

INTRODUCTION. CLASSICAL THREAD MODEL

(a) Three processes each with one thread.

(b) One process with three threads.

 Threads are running in the context of a given process,

inheriting several properties from this process. Sometimes

you can see the term of “ lightweight process” in order to

designate threads.

 Threads are meant to offer the necessary means for

executions, instead of managing resources that exist (and are

shared) in the context of current process.

 Classical processes are highly oriented to resource

identification and grouping, and also to execution.

THREADS

INTRODUCTION. CLASSICAL THREAD MODEL

THREADS

INTRODUCTION. CLASSICAL THREAD MODEL

Each thread has its own stack.

THREADS

INTRODUCTION. CLASSICAL THREAD MODEL

The first column lists some items shared by all threads in a process. The

second one lists some items private to each thread.

Items shared by all
threads in a process

 Address space

 Global variables

 Open files

 Child processes

 Pending alarms

 Signals and signal

handlers

 Accounting information

Items private to each
thread

 Program counter

 Stack

 Registers

 State.

THREADS

INTRODUCTION. CLASSICAL THREAD MODEL

There is a high interdependence between the
threads. This is because threads are running in
the same process space, and they have uniform
access to every available resource from the
“host” process.

Any thread can interfere with the execution of
any other thread.

There is no protection mechanism at thread
level. This kind of protection is not necessary,
considering the main characteristic of threads:
To offer parallel execution in order to (collaborate for)

solve problems in the space of the same process.

THREADS

INTRODUCTION

 Unlike multi -programming, multi-threading is based on the

presumption that several threads of the same process could

share several logical resources that are being used by the

process.

 Multi-threading does not necessarily require multi -tasking support

from the operating system.

 Multi-threading is offered in a manner similar with multi -

programming: alternate execution of dif ferent threads by a

permanent switch between the dif ferent thread that are being

executed.

 The switch mechanisms can be coordinated by the operating system

itself, or can be commanded by the process, depending on the thread

model being used.

THREADS

INTRODUCTION

Thread

states THREADS

 For threads, one can imagine a similar execution
model as for processes, with the same basic states
and transitions:
 Thread “ready for execution”, every thread that is able to

run, as soon as the thread is planned for execution.

 Thread “in execution” (or running), is the only active
thread, the thread that controls the current process.

 “Blocked” threads, are threads that are waiting for some
events. However, a thread can be blocked at the request
of another thread.

 “Ended” threads, are threads that have finished their
activities, and are waiting to report execution results (by
using the join mechanism).

THREADS

THREAD STATES

 In the case of the Windows 2000 model, there are six states:
 Ready: This specify a thread that can be scheduled for execution. The

micro-kernel should decide which of the ready threads is going to be
scheduled.

 Standby: This state specify a thread that has been selected to run on
a processor. It is maintained in this state until the processor is ready
(eventually, after preempting current thread).

 Running: This is the active thread. Its execution ends if it terminates,
it is blocked, preempted or its time slice expires.

 Waiting: This is a thread waiting for I/O operation, a synchronization
or it has been suspended.

 Transition: This temporary state specify waiting threads whose
resources are temporarily unavailable.

 Terminated: a terminated thread, by one of the following reasons:
normal termination, by another thread, by parent (process)
termination.

THREADS

THREAD STATES

I m p lem en t a t io n THREADS

Each process is starting its execution as a
single-threaded process.

The main thread is responsible with the
creation of other threads. Later, every other
thread is also able to create other threads.

Recalling threads characteristics,
maintaining and using parent-child
mechanisms is a difficult task.

The typical call for this operation is of type
thread_create()

THREADS

CREATING THREADS

 As for processes, thread termination can be realized explicitly,

by a thread_exit() call, or implicitly, once the thread has

returned and/or finished the execution of its “main” function.

 Threads offer their own synchronization mechanism, by using

the basic thread_wait() and thread_join() calls. In order to use

this kind of synchronization, a thread must be in a joinable

state.

 Synchronization mechanisms could also include several OS

primitives, as condition variables (used as a mechanism for

signaling some continuation conditions), mutual exclusion

(mutex) mechanisms, semaphores, and others.

THREADS

TERMINATING THREADS

 Threads are being executed in the space of a single
process, so mechanisms for limiting execution time are
no more effective.
 Threads always compete for fulfilling some tasks in process space. Following

this idea, it should be very important that threads are able to voluntarily
offer process’ resources to other threads.

 Threads are using the thread_yield() call in order to offer
the control to another thread; this call could be used in
order to evaluate some conditions.

 In order to device a thread control mechanism, one could
consider several problems, like:

 Inheriting threads from child processes (usually, this kind of
facility is not offered by the OS)

 (Re)using resources that are exclusively owned by a thread,
after its unexpected end (for example, due to another thread).

THREADS

EXECUTION CONTROL

 An approach for simple operating systems, like mono -user OS,

for an OS without the necessary support for threads, or for

every other OS.

 Thread execution is made only in user space:

 The OS does not know anything about these executions.

 The entire management is made at process level, by offering a

specialized thread-management subsystem.

 The management is based on a “thread” table, being

accompanied by decisions similar with scheduling decisions.

THREADS

IMPLEMENTATION. THREADS IN USER SPACE

THREADS

IMPLEMENTATION. THREADS IN USER SPACE

(a) A user-level threads package.

(b) A threads package managed by the kernel.

 Because all threads are executing in user space, the activity

of a scheduler should be quite fast.

 Cons: when using blocking system calls (like open, read and others) it

is possible to block the entire application, not only the current

thread.

 Cons: only one thread can be executed at a moment. The execution of

other threads is completely based on a fair execution of the current

thread (for example, current thread should issue explicit

thread_yield() calls in order to voluntarily give the control to other

processes).

THREADS

IMPLEMENTATION. THREADS IN USER SPACE

 The management activities for threads are “passed” to the
operating system.

 The OS should offer specific system calls for thread management,
and should maintain supplemental information for thread
management.

 Blocked threads does not necessarily block the entire
application

 The OS is able to schedule other threads from the same application,
if necessary.

 Thread creation or deletion are now costly operations, similar
with process creation or deletion.

 In order to go over this difficulty, the OS could maintain a pool of
thread-sockets, and deleted threads are only marked as being
deleted; instead they are kept in the system in order to speed up
future thread creations.

THREADS

IMPLEMENTATION. THREADS IN KERNEL SPACE

 Usually the OS does not limit to one of the two

implementations presented above. A hybrid approach is used

in order to combine the advantages of user -space threads with

the management for kernel -space threads.

 In the hybrid approach , threads are mapped in kernel space,

that is able to offer typical mechanisms for thread

management.

 The OS kernel is only interested about these management activities,

and not about the managed objects (that exist now in user space).

THREADS

IMPLEMENTATION. THE HYBRID APPROACH

THREADS

IMPLEMENTATION. THE HYBRID APPROACH

Multiplexing user-level threads onto kernel-level

threads.

 Global variables can rise severe problems when used in a
multi-threaded application. These problems are due the fact
that threads can access all the information in the space of
the process.

 Because there are no clearly defined protection mechanisms,
it could be possible that several threads that share the same
global information could be able to simultaneously modify its
value, thus offering the possibility of incorrect usage of these
information.
 For example, one thread execution is based on a value managed by

another thread. If the first thread is using this value before the other
thread has been able to modify it, it is possible to have a wrong
behavior from the first thread.

 This problem can be solved as follows:
 Avoiding the problem: do not use global data that can be changed.

 Offering private views for global data (this kind of information can be
named global-local variable)

THREADS

IMPLEMENTATION. COMMON PROBLEMS

A library function is reentrant if a second call
for this function is possible while its first call is
still running (not necessarily from the same
thread).

Sometimes such a function is a … thread-safe
function. Most of the library functions are not
reentrant. The second call could live several
internal structures in an inconsistent state.

Solutions for this problem include:
Rewriting the library functions in order to offer

reentrant variants;

Forbidding calls for unsafe (non-reentrant) functions.

THREADS

IMPLEMENTATION. COMMON PROBLEMS

 For OS with threads in user space, when a stack for a thread

is full, the OS does not necessarily promptly react. This could

be possible because there is no clear request from the

process that own the thread.

 The process itself is responsible with stack management, so

the thread-subsystem should solve supplemental requests

from threads and redirect them to the OS.

THREADS

IMPLEMENTATION. COMMON PROBLEMS

There are several reasons for thread usage,
including the following:

Foreground and background processing: a simple
application could use multithreading in order to
display menus, perform a document search, and
an update activity at the same time.

Asynchronous processing: asynchronous activities
could be implemented in a program as different
threads. An update activity, a periodic save of a
document can be considered asynchronous
activities.

THREADS

USING THREADS

 Speed-up execution: threads can be used in order to overlap

operations.

 For example, one thread could make some computations, while

another thread is preparing data for next computation.

 If a problem can be decomposed and various sub-problems can be

solved simultaneously, one can use several threads in order to

perform these computations.

THREADS

USING THREADS. EXAMPLES

THREADS

USING THREADS. EXAMPLES

A word processor with three threads.

 Modular program structure:

 Multi-threading can be used in order to offer an easier design and

implementation for applications that perform numerous activities,

with a large amount of sources and destinations for I/O operations.

THREADS

USING THREADS. EXAMPLES

THREADS

USING THREADS. EXAMPLES

A multithreaded Web server.

A rough outline of the code for previous Figure

(a) Dispatcher thread.

(b) Worker thread.

POSIX

Threads THREADS

 Reasons for threads usage

 High costs for creating new processes (via the fork() mechanism).

 Threads require less memory at startup time.

 Easy access to shared information / data.

 Each process is made up of one or several threads .
Information shared by all threads of a process include:

 Memory (as program code, global data);

 Open file and socket descriptors;

 Signal handlers and signal dispositions;

 Environment information (like current directory, user ID, and others).

THREADS

RECAPITULATION. MULTITHREADING

Like in the case of processes, each thread has
its own information:

Thread ID (integer);

Thread stack, registers, program counter;

errno (if not - errno would be useless!)

All threads within the same process have
access to global data, as well as shared
memory. Threads could use shared memory
for communication purposes.

POSIX THREADS

THREADS AS LIGHTWEIGHT PROCESSES

 Widely supported threads API;

 Implementations available on various platforms, including
Windows;

 For *NIX, and UNIX-like platforms, link your application
against the POSIX threads library:

 E.g. gcc … -lpthread

 Notice: compiler could use (on some systems) re -entrant
version of existing libraries, if available .

 E.g. strtok_r () is thread safe, while strtok () is not.

POSIX THREADS

CHARACTERISTICS

 Thread creation

 Subject to the call of pthread_create function:

pthread_create(pthread_t *tid, const pthread_attr_t *attr,
void *(*func)(void *), void *arg);

 Function returns 0 for OK, a positive value in
case of error (Notice: usually, C system calls
return -1 in case of error)

 The function does not set the errno value in case
of error!

 New thread ID is returned via the “pthread_t
*tid” value.

POSIX THREADS

THREAD CREATION

Thread creation

Specified func () is the thread function to be called.

The thread will terminate once thread function is
finished (there are some additional termination
mechanisms, however).

The pthread_attr_t * attr pointer is used for

thread attributes specification, including:

 Information about detached state;

 Scheduling policy.

(Use NULL for default values of ‘attr’)

POSIX THREADS

THREAD CREATION

Thread identification:

Thread IDs are unique in the context of current

process. A thread can recover its ID via the

pthread_self () call.

Thread ID are of type ‘pthread_t’. There is nothing

special: just an integer (unsigned) in disguise.

POSIX THREADS

THREAD CREATION

On thread creation, one can pass arguments
to the thread function, via the ‘void * arg’
parameter. Use NULL if there are no
arguments.

Default mechanism is using a simple ‘void *’
argument for the thread function.

Complex parameter could be passed by using
an appropriate package (e.g. struct, typedef):
 create a structure and pass the address of this

structure;
Notice: as threads are using different stacks (with

private data), you cannot use some local variables in
order to pass thread arguments.

POSIX THREADS

THREAD CREATION

 #include <pthread.h>

#include <stdio.h>

void *print_num (void *a)

{

 int i , odd = *((int *) a), ret ;

 for (i=0; i<4096; i++)

 {

 printf ("%4d ", odd) ;

 odd += 2 ;

 }

 ret = (i*3) ;

 pthread_exit (&ret) ;

}

int main ()

{

 int i , a=1, b=2, thrRet ;

 pthread_t thrID1, thrID2 ;

 pthread_create (&thrID1,

NULL, &print_num, &a) ;

 pthread_create (&thrID2,

NULL, &print_num, &b) ;

 pthread_join (thrID1, NULL)

;

 pthread_join (thrID2, (void

*)&thrRet) ;

 printf ("\n%d\n", thrRet) ;

 return 0 ;

}

POSIX THREADS

THREAD CREATION. AN EXAMPLE

Thread lifecycle

The designed thread function ‘func()’ is executed

once a thread was created.

The thread will terminate its execution when the

‘func()’ returns.

Alternatively, a thread could use the pthread_exit()

call in order to terminate its execution.

However, a thread terminates when main function

terminates or there is an explicit call for exit() from

ANY thread from process space.

POSIX THREADS

THREAD CREATION

 There are two states: detached and joinable .

 Detached thread
 on thread termination all thread resources are released by the OS.

A detached thread cannot be joined.

 There is no mechanism to recover the value returned by thread
function (in fact, there is no return value).

 Joinable thread
 On thread termination the thread ID and exit status are saved

by the OS.

 A thread can join with another thread by an explicit call of
pthread_join ():
 Calling thread will wait (blocks) until specified thread terminates

execution. However, the other thread must be in joinable state!

int pthread_join(pthread_t tid, void **status);

 Calling thread could recover ‘exist status’ of the other thread.

POSIX THREADS

THREAD STATES

 Problems with thread usage: global variables
atomic_t counter=0;

void *dummy(void *arg) {

counter++;

printf("Thread %u has counter %d\n",

 pthread_self(), counter);

}

void main() {

int i; pthread_t tid;

for (i=0;i<10;i++)

 pthread_create(&tid,NULL,dummy,NULL);

 }

 In this simple example, the 10 threads are able to
access and alter simultaneously the ‘counter’ value.
Unpredictable behavior could occur in real
situation.

POSIX THREADS

GLOBALS

Problems with thread usage: global variables

When using some shared information (like accessing

global variables), threads could use IPC techniques in

order to solve the issues.

The pthread library offers support for the mechanism

of Mutual Exclusion (mutex).

With mutex, different threads could control their

access to shared information by using a lock.

Notice that this mechanism is not enforced by the

OS!

POSIX THREADS

GLOBALS

 A lock is implemented by a global variable of type
pthread_mutex_t.

 pthread_mutex_t lock= PTHREAD_MUTEX_INITIALIZER;

 In the case of static variable, explicit initialization with
PTHREAD_MUTEX_INITIALIZER is required.

 More options for mutex initialization are available in the
case of dynamic variables.

 Condition Variables

 pthreads support condition variables, which allow one
thread to wait (sleep) for an event generated by any
other thread.

 This allows us to avoid the busy waiting problem.
 pthread_cond_t foo = PTHREAD_COND_INITIALIZER;

POSIX THREADS

GLOBALS. MUTEX AND CONDITION VARIABLE

 Using mutex.

 The mutex mechanism offer two blocking functions:

 pthread_mutex_lock(pthread_mutex_t &);

 pthread_mutex_unlock(pthread_mutex_t &);

 Calling thread will block until it is able to finalize the

specified action (mutex lock or unlock).

 Using Condition Variables

 A condition variable is always used with a mutex.

 pthread_cond_wait(pthread_cond_t *cptr, pthread_mutex_t *mptr);

 pthread_cond_signal(pthread_cond_t *cptr);

POSIX THREADS

MUTEX & CONDITION VARIABLES. USAGE

Standard “waiter”

pthread_mutex_t mutex;

pthread_cond_t cond;

pthread_mutex_lock (&mutex);

while (!condition)

 pthread_cond_wait (&cond,

&mutex);

do_something();

pthread_mutex_unlock

(&mutex);

Standard “signaler”

pthread_mutex_lock (&mutex);

// make condition TRUE

pthread_mutex_unlock

(&mutex);

pthread_cond_signal (&cond);

POSIX THREADS

MUTEX & CONDITION VARIABLES. EXAMPLE

