
OPERATING SYSTEMS

#4
After A.S.Tanenbaum, Modern Operating Systems, 3rd edition

Uses content with permission from Assoc. Prof. Florin Fortis, PhD

General

InformationDEADLOCKS

 A situation of deadlock usually occurs when the access to

resources is made in an exclusive manner.

 Two types of resources could be identified:

 Preemptive resources : resources that can be “obtained” from the

process that is holding them;

 Non-preemptive resources ,: resources that cannot be “obtained”, not

even forcibly, from the process that is holding them.

 Only non-preemptive resources can lead to a deadlock

situation.

 Question: WHY?

DEADLOCKS

RESOURCE TYPE

Non-preemptive resources

 We are using the term of resource to identify non-preemptive
resources

 These are the only ones that can be involved in a deadlock situation.

 Typical steps for using resources. Three simple steps are
required:

1. A request for getting the resource;

2. The effective usage of the resource;

3. A request for freeing the resource.

 Typically, these activities can be modeled by using simple
devices, l ike semaphores.

 When a request for getting a resource fails, it can be further
“solved” by simply using a busy -waiting cycle or a semaphore.

 In any case, we will make the presumption that the process is waiting.

DEADLOCKS

RESOURCE TYPE

Resource acquisition

 Resources that are acquisitioned by processes can be

managed at the level of the OS or at the level of each process.

 When the management is made at process level, it should be

enough to simply use a binary semaphore or a mutex variable

in order to gain the exclusive access to the resource

 Needed because of the non-preemption.

 The management of a situation with two or more resources

can be solved in the same manner, observing that processes

should follow the same scenario in order to get or free

resources.

DEADLOCKS

RESOURCE TYPE

A set of processes is in a deadlock situation if every process

in this set is waiting for an event that can be triggered only

by another process in the same set.

 Each process is waiting, not being able to generate any

event, eventually needed by another process:

 all processes are condemned to an infinite wait!

 We are going to use the following assumptions:

 Every process has only one thread, and any process can be waked

up only by the occurrence of the waited event.

DEADLOCKS

DEFINITION

 Four necessary conditions exist for a deadlock situation:

1. Mutual exclusion : every resource is either assigned to

exactly one process, or available;

2. Hold and wait : if a process holds resources, it is able to ask

for more resources;

3. Inexistence of preemption : no resource can be forcibly

obtained from any process;

4. Circular wait : one can emphasize a chain of process, where

each process is waiting for a resource that belongs to the

previous process in the chain.

DEADLOCKS

DEFINITION

 For a deadlock to occur, all the four conditions must be

satisfied.

 For example, when the third condition is missing, one can obtain

resources from processes, and a deadlock situation cannot occur.

 If the second condition is missing, then a process can hold at most

one resource, so no process should ever wait forever for another

resource.

 Notice that first three conditions are highly related with the

local policy of the system;

 The last condition reflect more a “ real situation” in the

activity of a system.

DEADLOCKS

DEFINITION

 In order to model a deadlock situation, one can use an

oriented graph.

 Represent processes by circles

 Represent resources by squares.

 An arc that is going from a process to a resource indicates

that the process is waiting for the resource to be available (is

asking the resources).

 An arc from a resource to a process specify that the process is

holding the resource.

DEADLOCKS

DEADLOCK MODELING

(a) Holding a

resource.

(b) Request ing

a resource.

(c) A deadlock .

RESOURCE

ALLOCATION

GRAPHS

 A deadlock situation cannot occur:

 when the execution of processes is sequential,

 when there is no competition for resources.

 Even if one cannot impose an execution order of the

processes, the OS could postpone the execution of several

processes in order to avoid a deadlock situation (thus waiting

for a “sure” state).

 Allocation graphs can offer important information to the OS in

order to detect a deadlock situation.

DEADLOCKS

DEADLOCK MODELING

An example of

how deadlock

occurs

and how i t can

be avo ided

DEADLOCK

OCCURRENCE

An example of

how deadlock

occurs

and how i t can

be avo ided

DEADLOCK

OCCURRENCE

An example of

how deadlock

occurs

and how i t can

be avo ided

DEADLOCK

OCCURRENCE

 Strategies for dealing with deadlocks:

1. Just ignore the problem.

2. Detection and recovery . Let deadlocks occur, detect them,

take action.

3. Dynamic avoidance by careful resource allocation.

4. Prevention , by structurally negating one of the four required

conditions.

DEADLOCKS

The

Ostrich

algorithm
DEADLOCKS

 The ostrich algorithm is based on the following approach of

the deadlock problem:

 Completely ignore the situation, hoping that things are not going to

be worst (or even hoping that the situation is able to solve by itself

☺)

 This “technique” is used when the frequency of a deadlock

situation is incomparable smaller than the frequency of other

major problems.

 Since the frequency of deadlock situations is quite small, PC

operating systems are using this simple solution, because.

 This solution is preferred in order to avoid other drastic limitations

imposed by several approaches of the deadlock problem.

 PC systems prefer convenience against fairness.

THE OSTRICH ALGORITHM

IGNORE THE PROBLEM

Deadlock

preventionDEADLOCKS

Deadlock situations can be prevented by “attacking” any of the

four conditions.

 Attacking the mutual exclusion,

 We can presume that the system is offering only preemptive

resources.

 However, any system is based on the existence of several non -

preemptive resources (for example, a line printer).

 We can attack this condition by using the old “spooling”

technique.

 In this situation, we are able to avoid a deadlock situation, but in

rare situations it is possible that another deadlock situation to occur

at the level of disc space.

 Question: Can you tell why?

DEADLOCKS. PREVENTION

MUTUAL EXCLUSION CONDITION

Attacking the hold and wait condition

1. Impose to the processes that are holding resources to wait
for the resources to be available when they are requesting
new resources.

 If processes are able to declare from the beginning all the resources
they need, then they can hold all the necessary resources from the
beginning.

 However, this approach is quite difficult to satisfy.

 There are several systems (mainframes, for example), that are using this
approach at some level.

2. A process that is requesting new resources should leave
temporarily all its current resources, and obtain them back
together with the other resources.

 Now processes could be forced to have a continuous communication
with the OS about resources!

DEADLOCKS. PREVENTION

HOLD AND WAIT CONDITION

Attacking the non-preemption condition

 Non-preemptive resources could be of major importance in an

operating system.

 Question: why?

 This condition cannot be attacked for resources that can

save/restore some state information (for example, the

processor).

 Question: can you name more resources?

DEADLOCKS. PREVENTION

NON-PREEMPTION CONDITION

Attacking the circular wait

1. Limit the resources that are at the disposition of a process
(for example, only one resource at a time).

 In order to obtain another resource, the process could first release
its current resource.

2. Resources are numbered in a circular manner.

1. New resources can be obtained in the strict order of their
numbers.

2. The deadlock situation can be avoided since we can deny the
access to resources for some processes.

 However, this is not a feasible solution since it is not possible to
impose a numbering scheme for all of the resources of the OS.

 Moreover, it is even possible that several processes cannot access
now resources that do not belong to any other process!

DEADLOCKS. PREVENTION

CIRCULAR WAIT CONDITION

(a) Numerical ly

ordered

resources.

(b) A resource

graph.

ATTACKING

CIRCULAR

WAIT

CONDITION

Detection

and

recovery
DEADLOCKS

 This technique can be used when, instead of trying to prevent

a deadlock situation, the system instead prefers to detect the

occurrence of such a situation and to react only in this

moment.

 The actions to be carried out form the recovering actions that

follow the detection of a deadlock situation.

DEADLOCKS. DETECTION AND RECOVERY

 The simplest situation that one can imagine is using only one

resource of each type.

 For this situation, the existence of an deadlock situation can be

signaled by the existence of a cycle in the resource graph.

 Each process in this cycle is in a deadlock situation.

 A system where one cannot emphasize a cycle in the resource

graph is called free of deadlocks .

DEADLOCKS. DETECTION AND RECOVERY

ONE RESOURCE OF EACH TYPE

 The algorithm:

1. For every node N of the graph, the following steps are executed,
with N the start node.

2. Initialize a list of nodes, L, with the empty list. All arcs are not
marked.

3. Add current node in the list L. If this node occurs twice in the list,
a cycle has been identified.

4. If there are unmarked arcs LEAVING current node, go to step 5,
otherwise go to step 6.

5. Mark one of the unmarked arcs. The node in which this arc is
entering becomes current node. Go to step 3, using the updated
current node.

6. Remove current node from the list and go to the previous node
(this becomes the new current node). If this is the initial node,
STOP. Otherwise, go to step 3.

DEADLOCKS. DETECTION AND RECOVERY

ONE RESOURCE OF EACH TYPE

 Previous algorithm is not useful when there are several

resources of every type.

 Now resources are regrouped in classes of resources (resources of

the same type are, obviously, in the same class).

 Processes are identified by P i, while the number of resources

in a class is E j (where j is the class number)

 Existent resources are grouped together in a vector E.

 All available resources are stored in the vector A (resources

that are not allocated to other processes),

 The matrix C holds current allocation information.

 The matrix R holds the requests of the processes.

DEADLOCKS. DETECTION AND RECOVERY

SEVERAL RESOURCES OF EACH TYPE

The four data

st ructures

needed by the

deadlock

detect ion

algor ithm

DETECTION

AND

RECOVERY

SEVERAL

RESOURCES

OF EACH

T YPE

The algorithm for deadlock detection :

1. Look for an unmarked process P i, such that its line in matrix

R is less or equal with the values of the vector A (meaning

that one can satisfy the allocation requests).

2. If there is such a process, add line i from matrix C to the

vector A, mark the process, and go back to step 1.

3. If there is no such process, the algorithm STOPs.

4. After the execution of this algorithm, all the processes that

are not marked should be in a deadlock situation. Marked

processes are processes that are deadlock free.

DEADLOCKS. DETECTION AND RECOVERY

SEVERAL RESOURCES OF EACH TYPE

Example for

deadlock

detect ion

a lgor ithm

DETECTION

AND

RECOVERY

SEVERAL

RESOURCES

OF EACH

T YPE

 Detection alone cannot solve the deadlock problem.

 In order to be efficient, one should establish the moments when the

method is to be executed.

 If the execution is quite frequent, the performance of the

entire system is dropping down.

 Appropriate moments could be moments of low activity of the

system, or moments that come from a very rare verification

scheme.

DEADLOCKS. DETECTION AND RECOVERY

DEADLOCK RECOVERY

 Mechanisms for unlocking the situation are based on the four
conditions:

1. Preemption : the system should obtain (forcibly, when required)
some resources from a few processes in order to unlock other
processes.

2. Come back : system is able to keep information that define several
periodic “check points”.

 When a deadlock occurs, the resource graph is determined again based on
these information.

 One of the processes in the deadlock situation is forced to go back to a
previous checkpoint, offering necessary resources to other processes.

3. Process removal : this is the final solution.

 Several processes are destroyed, hoping that the others are able to go over
the deadlock situation.

 This mechanism should be used such that the consequences are minimal.

DEADLOCKS. DETECTION AND RECOVERY

DEADLOCK RECOVERY

Deadlock

avoidanceDEADLOCKS

 The matrix and vectors E, A, C, R define the current state of

the system.

 A state is sure if there is no deadlock and if processes can be

planned such that they are able to finish their activity.

 If a state is not sure, it is unsure .

 It is possible that, by a certain order of process planning, an

unsure situation could be reached from a sure state.

 The deadlock could be avoided if the next state is always sure.

DEADLOCKS. AVOIDANCE

STATE TYPE

 The state in (a) (first row) is sure; the state in (b) (second row)

is unsure

 The Banker’s algorithm (due to Dijkstra) is
used to verify if by satisfying the requests of a
process (by scheduling the process), it is
possible to reach an unsure state. The request
is denied in this situation.

 In order to verify if a state is sure, the banker
should check first if the available resources
are enough to fulfill the requirements of some
client.

 Notice that every request is treated just after
its occurrence. Requests that can lead to a
deadlock situation should be denied and
postponed, if necessary.

DEADLOCKS. AVOIDANCE

THE BANKER’S ALGORITHM

This is a very simple situation.
In this algorithm, a request is treated as

soon as it occurs:
If a request can lead to an unsure state,

the request is denied or postponed until it
can lead to a sure state.

From a sure state, the banker must check
only if the remaining existing resources are
enough for the requirements of a client.

DEADLOCKS. AVOIDANCE

THE BANKER’S ALGORITHM FOR SINGLE RESOURCE

DEADLOCKS. AVOIDANCE

THE BANKER’S ALGORITHM FOR SINGLE RESOURCE

 If Avail=1, this state becomes unsure!
 If process A requests one resource, then

offering the resource to process A we can
reach an unsure state.

 Following the simple Banker’s algorithm, in
this state each request coming from process A
must be denied.

 Process C requests could be denied too, even
if allocating one resource to process C cannot
change this state!

DEADLOCKS. AVOIDANCE

THE BANKER’S ALGORITHM FOR SINGLE RESOURCE

Initial situation

Has Max

A 0 6

B 0 5

C 0 4

D 0 7

Available: 10

Sample requests

 For the requests (1, 1,

2, 4) the new state is

sure.

 Only one process is able

to continue!

 If after this the

requests are (0, 1, 0, 0),

the new state is unsafe.

 Can you say why?

DEADLOCKS. AVOIDANCE

THE BANKER’S ALGORITHM FOR SINGLE RESOURCE

Initial situation

Has Max

A 70 45

B 60 40

C 60 15

Total: 150

Sample requests

 Is this a sure state?
 Show a possible path to justify your

answer.

 If there is a new process,
D, with Max=60 and Has
(initial)=25, the new state
is sure?
 What if for the new process Has=35?

 Detect the maximum
value for Has for process D
such that the new state to
be sure

DEADLOCKS. AVOIDANCE

THE BANKER’S ALGORITHM FOR SINGLE RESOURCE

The generalized version of the Banker’s
algorithm.

For this algorithm we are using again
 the current allocation matrix (C),

 the requested resources matrix (R),

 the array of available resources (A),

 the array of existent resources (E),

and the array of resources at processes
disposition (P).

The algorithm consists of the following
simple steps:

DEADLOCKS. AVOIDANCE

THE BANKER’S ALGORITHM: MULTIPLE RESOURCES

1. Look for row, R, whose unmet resource needs all ≤ A. If no

such row exists, system will eventually deadlock since no

process can run to completion

2. Assume process of row chosen requests all resources it

needs and finishes. Mark process as terminated, add all its

resources to the A vector.

3. Repeat steps 1 and 2 until either all processes marked

terminated (initial state was safe) or no process left whose

resource needs can be met (there is a deadlock).

DEADLOCKS. AVOIDANCE

THE BANKER’S ALGORITHM: MULTIPLE RESOURCES

State Matrix description

The R Matrix

2 0 0 1

1 0 1 0

2 1 0 0

 Consider

 A=(2,1,0,0)

 Detect the values of E.

 Is this a deadlock

situation?

DEADLOCKS. AVOIDANCE

THE BANKER’S ALGORITHM: MULTIPLE RESOURCES

The C Matrix

0 0 1 0

2 0 0 1

0 1 0 0

State Matrix description

The MAX Matrix

0 0 1 2

2 7 5 0

6 6 5 6

4 3 5 6

0 6 5 2

 Consider

 A=(2,1,0,0)

 Detect the values of E.

 Is this a sure state?

 Is the system in a
deadlock situation?

 Which of the five processes
could reach a deadlock?

 What happens if (0,1,0,0)
was granted for Process 3?

DEADLOCKS. AVOIDANCE

THE BANKER’S ALGORITHM: MULTIPLE RESOURCES

The C Matrix

0 0 1 2

2 0 0 0

0 0 3 4

2 3 5 4

0 3 3 2

• Consider a situation where A=(2, 1, 0, 0),

• Max= , C=

• Detect the value of E. Is this a sure state?
• Is the system in a deadlock situation?
• Which of the 5 processes could reach a deadlock?
• Analyze the situation when a request of (0, 1, 0, 0) is

granted to process P3.

EXERCISES

6566

6534

2560

0572

2100

4532

4300

2330

0002

2100

