

OPERATING SYSTEMS

#7
After A.S.Tanenbaum, Modern Operating Systems

 3rd edition
Uses content with permission from Assoc. Prof. Florin Fortis, PhD

Inter -Process
Communicat ion IPC

¡  There are three requirements for inter-
process communication:

1.  Establish a way for passing information between
processes.

2.  Emphasize the means by which one can guarantee
the activities of processes

3.  Assure means for a correct order of execution of the
process.

IPC

¡ A situation where the result of the execution for two
or more processes that share some resources
depends on the execution order of these processes is
called a race condition.

¡ Example:
§  In order to print data in a UNIX system, a special folder is used to

keep print orders – the spooler directory. For this directory
specific mechanisms are implemented, to guarantee that all
requests are properly solved.

§ A race condition can occur when two processes request
simultaneously print orders, and these orders are registered at the
same time in the spooler directory. By interleaving the operations
of obtaining a print ticket, saving the print job and updating the
printing ticket value, it is possible that the request of one of these
processes to be never solved.

IPC. RACE CONDITIONS

¡ 1. S=1
¡ 2. S=S+2

¡ Can you offer a final
value after the
execution of the two
processes?

¡ A. S=2
¡ B. S=S+2

¡ The two processes
are executed
simultaneously. S
variable is shared.

IPC. RACE CONDITIONS
INTERLEAVING

IPC. CRITICAL REGIONS

¡ The part of a process where competitive
services are required (eventually from the OS,
usually because of some shared resources) is
called critical region.

¡ The protection of critical regions can be realized
by using specific mechanisms, able to assure
the mutual exclusion of processes.
§ The mechanisms of mutual exclusion are also good

candidates for race condition avoidance.
¡ A race condition can be avoided if it is possible

to offer a mechanism that guarantee that two
processes are not in simultaneously in their own
critical regions.

¡  There are several conditions for a correct
solution for the critical section problem:

IPC. CRITICAL REGIONS

1. Two processes cannot be simultaneously inside their own critical regions.

2. In a solution for the critical region, there shouldn’t be made any assumption about the
speed or the number of processors.

3. A process that is functioning outside its own critical region cannot block the activity of
any other process.

4. A process cannot wait forever for its entrance in his own critical region.

¡  However, there is a second version for these conditions (due
to W.Stallings) :

Exercise: SHOW THAT THESE TWO SETS OF RULES ARE

EQUIVALENT.

IPC. CRITICAL REGIONS

1. Only one process can be in its own critical region at one moment.

2. In a solution for the critical region, there shouldn’t be made any assumption about the
speed or the number of processors.

3. A process that is blocked outside its critical region should not alter the functioning of
any other process.

4. No process that is waiting for its entrance in its critical region should be postponed
indefinitely.

5. When there is no process inside a critical region, the entrance in a critical region should
be granted for the first process that want to access its own critical region.

6. A process can be in its critical region only for a limited period of time.

IPC. ACHIEVING MUTUAL EXCLUSION BY
CRITICAL REGIONS

Mechanisms
for mutual
exclusion

IPC.

Proposals for achieving mutual exclusion:

1.  Disabling interrupts
2.  LOCK variables
3.  Strict alternation
4.  Peterson’s solution
5.  The TSL instruction

IPC. MECHANISMS FOR MUTUAL EXCLUSION

Interrupt blocking
¡  This is the simplest solution that one can imagine:

§  every process that enter its critical region should block (or
deactivate) interrupts.

¡  No interrupts are possible for other processes
§  Notice that this will include … timer interrupts!

¡  Moreover, the processor cannot be allocated to other
processes (because of the timer interrupts);

§  the current process is able to perform now its job without any
interference from another processes.

Exercise: which of the four (or six) rules are not
satisfied? Why?

¡  However, several problems can occur in this solution.

For example, in a multi-processor system, the interrupts are

deactivated only for a single processor. Any other process,
running on other processor, could enter its own critical region.

Can you identify other problems?

IPC. MECHANISMS FOR MUTUAL EXCLUSION

LOCK variables
This is a simple software solution, based on the following idea:
§ Any process that is willing to enter its critical region should

test first the value of the LOCK variable;
§  If its value is 0, it sets it on 1, and enters the critical region;
§ Otherwise, the process should wait until the value f LOCK is 0

again.
¡  Theoretically, this is a “good” solution. However, because the

operation on the LOCK variable are not made atomically, it is
possible that two processes to be allowed simultaneously in
their own critical regions (for example, setting LOCK value on
1 occurs only after the other process checked the value of
the LOCK variable – 0)

¡  This kind of situation usually occur because of the
phenomenon of operation interleaving .

IPC. MECHANISMS FOR MUTUAL EXCLUSION

Strict alternation
¡ This is another version for the previous solution, using

LOCK variables.
In this situation, two processes share a variable, turn, used only

in order to control the entrance in the critical region.
Every process should modify this value when leaving its critical

region, in order to offer this region to the other process. The
other process is blocked in a cycle of permanent checking,
until the required value for entering the critical region is
reached.

¡ This permanent verification is called busy waiting.
¡ A situation where a process is blocked due to an busy

wait is called… spin lock.
¡ Busy waiting should be avoided, as much as possible, in

the activity of a process. However, it could be used only
when the estimated “busy waiting” time is short enough.

IPC. MECHANISMS FOR MUTUAL EXCLUSION

while (1) {
 while (turn != 0) ; // busy wait
 crit ical_section () ;
 turn = 1 ; // pass to process 2
 noncritical_section () ;
 }

while (1) {
 while (turn != 1) ; // busy wait
 crit ical_section () ;
 turn = 0 ; // pass to process 1
 noncritical_section () ;
 }

IPC. MECHANISMS FOR MUTUAL EXCLUSION
STRICT ALTERNATION

q  In this solution a situation when a faster process is obliged to wait after a
slower process when the faster one wants to enter its own critical region
could occur.
v  Thus, the first (and the fastest) process could execute twice its critical section and arrive

again to the entry point for another critical section before the second one is able to finish
its first execution of its non-critical section!

Exercise: are there any rules that are not satisfied in this solution? Which
ones?

Peterson’s solution
¡ There is a solution offered by Dekker and Peterson, in

order to improve the previous solution.
§ Now, processes can pass the control for the critical region

by using the new variable turn.
§ However, if a process holds the turn variable, and it is not

really interested in the critical section, the other process
could be allowed to enter (by an explicit expression of its
interest) its critical section.

§ Always the interest for critical section should be
announced before the critical section, and leaved after
leaving the critical section.

IPC. MECHANISMS FOR MUTUAL EXCLUSION

Leaving critical region

 int turn ;
 int interest[2] ;
 void leave_region (int

process) {
 interest[process] =

FALSE ;
}

Entering critical region
 void enter_region (int

process) {
 int other ;
 other = 1 – process ;
 interest [process] =

TRUE ;
 turn = process ;
 while ((turn == process)

&& (interest[other] ==
TRUE)) ; // busy wait

}

IPC. MECHANISMS FOR MUTUAL EXCLUSION
PETERSON’S SOLUTION

TSL Instruction (Test, Set, Lock)
¡ This time we have a hardware solution, based on an

instruction offered by several processors. The TSL
instruction has the following syntax

TSL Reg, LOCK

¡ The functioning of this instruction is quite simple:
§  it deposits first the value from LOCK in the register Reg;
§  then it stores a non-negative value in LOCK.
§ All these operations are guaranteed to be atomic (indivisible),

so other process or processor is not able to access these
memory addresses simultaneously.

IPC. MECHANISMS FOR MUTUAL EXCLUSION

¡ A solution based on the TSL instruction can be
easily modeled. One should use a shared
variable, LOCK, initialized by 0. The value of
LOCK is reset when leaving the critical section.

IPC. MECHANISMS FOR MUTUAL EXCLUSION
TSL INSTRUCTION

enter_region:
 TSL RX,LOCK
 CMP RX, #0
 JNE enter_region
 RET

leave_region:
 MOV LOCK, #0
 RET

¡ A second solution based on the TSL instruction
can be identified. This solution is based on the
“exchange” instruction.

IPC. MECHANISMS FOR MUTUAL EXCLUSION
TSL INSTRUCTION

enter_region:
 MOV RX,#1
 XCHG RX, LOCK
 CMP RX,#0
 JNE enter_region
 RET

leave_region:
 MOV LOCK, #0
 RET

¡ All the solution presented until now has the same
weakness: busy waiting.

¡ Also, most of the solutions considered make the
presumption of a strict protocol for accessing the
critical region.
§  Busy waiting can generate a severe problem in an OS, namely the

problem of inverted priorities. This is a situation when a process of
higher priority depends on the activity of a process of lower priority
(that has – accidentally – entered the critical section).

§  Because of the very different priorities, the process with a lower priority
could have the “bad luck” of never exiting its critical region, because
the process with a high priority is always preferred (by the planning
algorithm). This situation cannot evolve, since the process of higher
activity has the monopoly over the processor (because of its busy
waiting cycle).

IPC. BUSY WAITING

Sleep() and wakeup() primitives
¡ The sleep() primitive is used in order to block the

activity of a process that is waiting on its entrance
to the critical section, instead of busy waiting.

¡ The wakeup() primitive could be used in order to
“wakeup” processes previously blocked.

¡ However, these two primitives require some
addressing mechanisms (for example, by using a
shared location of memory) in order to address the
other process.

IPC. MECHANISMS FOR MUTUAL EXCLUSION

Producer process
void producer () {
 int item ;
 while (1) {
 item = create () ;
 if (count == N) sleep () ;
 add_item (item) ;
 count += 1 ;
 if (count == 1)
 wakeup (consumer) ;
 }
}

Consumer process
void consumer () {
 int item ;
 while (1) {
 if (count == 0) sleep () ;
 item = get_item () ;
 count -= 1 ;
 if (count == N-1)
 wakeup (producer) ;
 use_item (item) ;
 }
}

IPC. MECHANISMS FOR MUTUAL
EXCLUSION

SLEEP-WAKEUP; PRODUCER-CONSUMER

¡  In this solution, the producer is blocked when the buffer
is full, and the consumer is blocked when the buffer is
empty. Each process could be waked up when the block
condition is no longer effective.
§ A race condition still can occur, because there is, for the

moment, no constraint over the count variable.
¡ By using a scenario of interleaved operations (maybe

based on some “collaboration” with the scheduler) it
could be possible that a wakeup call to be wasted.
§ A consumer arriving at a sleep call could remain permanently

blocked because it never knows that the buffer is no longer
empty.

¡ After this moment, the producer could eventually fill the
buffer of items. Finally, both processes ends by being
blocked for a wakeup signal that never occurs.

IPC. MECHANISMS FOR MUTUAL
EXCLUSION

SLEEP–WAKEUP; PRODUCER-CONSUMER

Semaphores
¡ The semaphores were introduced by Dijkstra in order to

“avoid” the occurrence of wasted wakeup signals. The
semaphores are used in order to count the wakeup calls
that has been realized.

¡ A semaphore is just a non-negative integer value,
together with two basic operations: down () and up () (P
and V, in the original – Dutch – notation).
§  The down operation verifies the value of the semaphore, and it is

different from 0, it is decremented (and the process can pass). If
the semaphore has a 0 value, the process is blocked until it can
continue the down operation.

§  The up operation is used only to increment the value of a
semaphore. Both operations are guaranteed to be indivisible, and
they can be carried out safely, without any interference from
another process.

IPC. MECHANISMS FOR MUTUAL EXCLUSION

¡  One can model a solution for the producer-consumer problem by
using two general semaphores:
§  full, used to count filled positions from the buffer, and
§  empty, used to count free positions from the buffer.

¡  Initially, full is 0, and empty is N (this being the dimension of the
buffer).

¡  By simply using these two semaphores we cannot obtain the
necessary mechanisms to avoid race conditions. For this
purpose, one should also use a supplemental (binary)
semaphore, mutex , used to control the access to the critical
region. This supplemental semaphore offer the guarantee that
the producer and the consumer are not able to access
simultaneously the buffer.

¡  This solution also offers the guarantee that both the producer
and the consumer are blocked in extreme situations.

IPC. MECHANISMS FOR MUTUAL EXCLUSION
SEMAPHORES

Producer process
void producer () {
 int item ;
 while (1) {
 item = create () ;
 down (&empty) ;
 down (&mutex) ;
 add_item (item) ;
 up (&mutex) ;
 up (&full) ;
 }
}

Consumer process
void consumer () {
 int item ;
 while (1) {
 down (&full) ;
 down (&mutex) ;
 item = get_item () ;
 up (&mutex) ;
 up (&empty) ;
 }
}

IPC. MECHANISMS FOR MUTUAL EXCLUSION
SEMAPHORES. PRODUCER-CONSUMER

PROBLEM

What happens when these two lines are swapped?

MUTEX
¡  The idea for this mechanism is based on binary semaphores

(these semaphores are also used under the name of.. .
mutexes).

¡  Mutex variables are constructed with only two states; blocked
and free (or unblocked). The basic implementation is similar
with the TSL based implementation.

¡  However, unlike TSL, in the implementation for mutex variables
the busy waiting cycles can be avoided.

¡  Two basic procedures are provided, mutex_lock and
mutex_unlock , similar by construction with those from TSL,
enter_region and exit_region .

¡  Mutex variables and solutions based on these variables are very
good for modeling critical section control for thread-based
applications.

¡  Because the basic functioning of mutex variables does not
require any switch to the kernel mode of functioning, thread
switch operation can be solved quite quickly.

IPC. MECHANISMS FOR MUTUAL EXCLUSION

¡ A simple implementation could be based on
the TSL solution.

IPC. MECHANISMS FOR MUTUAL EXCLUSION
MUTEX IMPLEMENTATION

mutex_lock:
 TSL RX,MUTEX
 CMP RX,#0
 JZE ok
 CALL thread_yield
 JMP mutex_lock
ok: RET

mutex_unlock:
 MOV MUTEX, #0
 RET

1.  Exercise: check if the solution based on
semaphores and sleep-wakeup primitives
verify the 4 (or 6) conditions for a correct
solution.

2.  Exercise: is the solution of Peterson correct?
3.  Exercise: are there any problems that can

occur in the solution based on semaphores
when the down (&mutex) operation occurs
before the down (&empty) operation?

IPC. MECHANISMS FOR MUTUAL EXCLUSION

¡ Solutions based on semaphores are very
sensible in their construction. A simple error
in application logic is enough to generate a
deadlock situation: a situation when two or
more processes wait indefinitely for some
events to occur, and these events cannot
occur.

¡ C.A.R Hoare and B. Hansen proposed a
powerful synchronization primitive of higher
level (implemented in several concurrent
programming languages), called monitors.

IPC. MECHANISMS FOR MUTUAL EXCLUSION

¡ A monitor is a collection of procedures, variables and
data structures, grouped together in modules. Processes
can call procedures from these modules (monitor),
without any direct access to its internal structures.

¡ Mutual exclusion is guaranteed as follows: the monitor
guarantees that there is only one active process inside its
modules; any process that is willing to call a monitor-
procedure should be suspended if there is another
process that is active inside the monitor, until the
uniqueness condition is satisfied.

¡ However, only this simple implementation for mutual
exclusion does not offer any guarantees that the 4 (6)
conditions are satisfied: a consumer that is blocked
inside a monitor (for example, a consumer trying to
access an empty buffer) indefinitely blocks all the other
processes that are trying to access the monitor
simultaneously.

IPC. MECHANISMS FOR MUTUAL EXCLUSION
MONITORS

Condition variables
¡  These situations can be protected by a novel mechanism:

condition variables. These special structures are
implemented together with two simple operations: wait and
signal .

¡ When current process identifies a situation where its activity
can be blocked inside a monitor, it can use a wait operation
on a condition variable. Now, the current process could be
suspended and the monitor released for other processes. The
blocked process could be waked-up when the condition
variable is signaled and it should continue its activity only
when the uniqueness condition is satisfied.

¡  The mechanisms introduced by monitors are used in
different programming languages (most known being, of
course, Java). Also, similar mechanisms are used together
with threads, as synchronization mechanisms.

IPC. MECHANISMS FOR MUTUAL EXCLUSION
CONDITION VARIABLES

Message passing
¡ This mechanism is based on two simple

procedures: send() and receive(). There are
different methods of implementation, using
different methods for the identification of
communicating parts.

¡ For example, the send() primitive could be
used in order to send messages to a fixed
destination, or the receive() primitive could be
used in order to wait from messages from
(very) different sources.

IPC. MECHANISMS FOR MUTUAL EXCLUSION
MESSAGE PASSING

Requirements
¡ A system based on message passing should

satisfy several requirements for a correct
implementation:
§  Establish a protocol for confirmation of message reception. This

is necessary since there is a permanent threat that messages
can be lost in a distributed environment. If there is no
confirmation, the sender should issue again the message.

§ Multiple messages avoidance. When using the protocol from
previous point, it is possible to have several occurrences of the
same message.

§ Process naming. By using this mechanism one should avoid any
ambiguity in the identity of communicating parts. This problem/
requirement is highly related with process authentication.

IPC. MECHANISMS FOR MUTUAL EXCLUSION
MESSAGE PASSING

Producer process
 void producer () {
 int item ; message msg ;
 while (1) {
 item = create_item () ;
 receive (consumer,

&msg);
 generate (&msg, item) ;
 send (consumer, &msg);
 }
}

Consumer process
 void consumer () {
 int item ; message msg ;
 for (i=0; i<N; i++)
 send (producer, &msg) ; //

empty
 while (1) {
 receive (producer, &msg) ;
 item = get_item () ;
 send (producer, &item) ;
 use_item (item) ;
 }
}

IPC. MECHANISMS FOR MUTUAL EXCLUSION
 MESSAGE PASSING

IPC. MECHANISMS FOR MUTUAL EXCLUSION
 MESSAGE PASSING

¡  This solution makes the presumption that there is a fixed
number of messages in the system. Initially empty
messages (containers) transmitted by the consumer, they
should be filled-in by the producer and empty again by the
consumer. The number of the messages in the system
defines the buffer size.

¡  A different approach is based on mail-boxes, used in order
to store messages at destination. Send and Receive should
access now mail-boxes instead of processes. An write
action in a full buffer should suspend the process until the
mail-box is able to support the operation.

¡ Mail-box utilization emphasize several buffering
mechanisms: the mail-box is the buffer of un-processed
messages.

¡  If there is no buffering mechanism, the solution thus
obtained is the rendez-vous .

A Java solut ion
for producer -
consumer
problem

THE
PRODUCER-
CONSUMER
PROBLEM
(1)

A Java solut ion
for producer -
consumer
problem

THE
PRODUCER-
CONSUMER
PROBLEM
(2)

A Java solut ion
for producer -
consumer
problem

THE
PRODUCER-
CONSUMER
PROBLEM
(3)

These
problems
are for OWN
STUDY.
Please read,
understand,
implement!

CLASSICAL
COMMUNICATION

PROBLEMS

¡  Here, five philosophers are sitting on a circular table. Each
philosopher has a plate for food and two forks (or chopsticks),
shared with the neighbors from left and right. There is a bowl
(permanently) full of food. In order to feed, every philosopher
needs the two forks (chopsticks).

¡  The life of a philosopher is made up from thinking periods and
feeding periods. A hungry philosopher should take both forks
(for example, first the left one and then the right one) and start
feeding immediately he holds the two forks.

¡  Several situations can occur:
§ All the philosophers take the (left) fork simultaneously.
§  The philosophers does not pick a fork if the other is not

available. Now, one can enforce a philosopher to wait indefinitely
(starvation) by a bad “collaboration” of the others..

§ Provide exclusive access to the chopsticks. This is an acceptable
solution. However, only one philosopher is able now to feed at a
time.

CLASSICAL COMMUNICATION PROBLEMS
DINING PHILOSOPHERS

Phi losophers on
table

DINING
PHILOSOPH
ERS

A “bad”
so lut ion for
d in ing
phi losophers

DINING
PHILOSOPH
ERS

A good solut ion
for d in ing
phi losophers

DINING
PHILOSOPH
ERS (1)

A good solut ion
for d in ing
phi losophers

DINING
PHILOSOPH
ERS (2)

A good solut ion
for d in ing
phi losophers

DINING
PHILOSOPH
ERS (3)

¡  In this problem there are several processes that are able to use
resources (without consumption) and processes that are able to
produce/update these resources.

¡  It should be possible that several processes use the resources
simultaneously. It is not acceptable that several processes to
produce/update items at the same time.

¡  Possible solutions:
§  Writers are active only after all the readers finish their activity. There is

no protection against new readers, it is possible that the writers are
obliged to wait indefinitely. In this situation, the readers are always
preferred.

§  Writers are immediately active. Now, it is possible that the readers wait
indefinitely, due to a high rate of writers.

§  New readers wait until a writer ends its activity. This solution has
another weakness: the multiprogramming level is decreased since only
one writer can be active, any other process should block.

CLASSICAL COMMUNICATION PROBLEMS
READERS AND WRITERS

A good solut ion
for “ readers
and wr i ters”

READERS
AND
WRITERS
(1)

A good solut ion
for “ readers
and wr i ters”

READERS
AND
WRITERS
(2)

¡  In this problem there is a barber (namely, the
processor), with a single sit (the active process) and
several waiting chairs (ready processes). The barber is
waiting if there are no clients, or it should service the
customers in a well defined order. The clients should
sit in empty chairs, could occupy the barber sit or
leave the barbershop, if there are no empty chairs.

¡ This problem consists in planning the activity of the
barber in order to avoid the occurrence of a race
condition.

CLASSICAL COMMUNICATION PROBLEMS
BARBERSHOP

