

OPERATING SYSTEMS

#8
After A.S.Tanenbaum, Modern Operating Systems

 3rd edition
Uses content with permission from Assoc. Prof. Florin Fortis, PhD

MEMORY MANAGEMENT

¡ The memory is one of the most important resources
of a computing system.
§  Its management must be realized with caution: the

memory is very important for the good functioning of the
entire operating/computing system.

¡ Each computing system is able to offer several
categories of memory devices (see the hierarchy of
memory devices):

§ A small amount of cache memory;
§ A large amount of (RAM) memory, usually called the main

memory;
§ A significant amount of long-term, non-volatile memory, like

disk units.

MEMORY MANAGEMENT

¡  The main task of the memory manager is to… manage the
hierarchy of memory devices, by:

§  Accounting memory usage;
§  Allocating memory to processes;
§  Getting back (released) memory from processes;
§ Managing the basic mechanisms, like swapping, whenever necessary.

MEMORY MANAGEMENT

¡  There are two major categories of memory management
systems:
§  Systems that are based on a permanent switch of processes between

main memory and disc:
§  Systems based on paging or swapping.

§  Simple systems, without any process switch (see Figure, next slide).

BASIC MEMORY MANAGEMENT

W/O
swapping
or paging

MONO-PROGRAMMING

MONO-PROGRAMMING, WITHOUT
SWAPPING OR PAGING

Three simple ways of organizing memory with an
operating system and one user process.

¡  It is based on the idea that there is a unique program in
memory at a time, together with the (core of the) operating
system;

¡  There were three basic schemas for mono-programming
memory organization, mentioned on previous slide:
a)  Schema used for mainframe operating systems and

mini-computers.
b)  Schema used for palmtop and embedded systems.

It could be still in use.
c)  Schema used for micro-computers.

a)  Notice the special part of (ROM) memory: the “Basic
Input-Output System”.

MONO-PROGRAMMING, WITHOUT
SWAPPING OR PAGING

With fixed
partitions MULTIPROGRAMMING

¡  It is characteristic for modern operating systems.
¡  A very simple method based on dividing the main memory

in several partitions, possibly of the same size.
¡  Two situations are possible

1.  A new job is put in the queue of a partition big
enough to support the job.

2.  All jobs are put in the same queue

MULTI-PROGRAMMING WITH FIXED
PARTITIONS

1.  A new job is put in the queue of a partition big enough to support
the job.

§  In this situation, the unused space is considered to be lost.
§  In this method the jobs are sorted on their size and there are several

queues used to hold the jobs.

§ E.g. A system that is going to extensively use short
sized jobs is going to keep big partitions unused
most of the time.
§  It could be possible to have short size jobs waiting in the

system, even if there is enough free space to satisfy these
jobs!

MULTI-PROGRAMMING WITH FIXED
PARTITIONS

2.  All jobs are put in the same queue
§  Now it is possible to avoid previous problems,

but there is a high risk to have an inefficient
usage of the existing partitions. There are
several alternatives:

1.  When a partition is freed, this partition is offered to the
job that best fits with the partition: it is possible to
“forget” several small jobs;

2.  Permanently offer at least one small partition for small
sized jobs.

3.  Offer a guarantee to processes: they are loaded in
memory at least once during a fixed amount of time.

MULTI-PROGRAMMING WITH FIXED
PARTITIONS

¡ By using multi-programming one could improve
the level of processor usage;
§ E.g. If a process uses only 20% of computing resources,

that one can think that 5 processes are going to use
100% J However, this situation requires a perfect
synchronization between these processes.

¡ In fact, in a system with n identical processes,
the level of processor usage is at most 1-p^n,
where p is the fraction of time used for input/
output operations.
§ E.g. For our previous situation, the level of processor

usage is, at most, 67%. At least 10 processes are required
for a higher level of processor usage…

MODELING MULTI-PROGRAMMING

Protection
and
relocation

MEMORY MANAGEMENT

¡ By multi-programming two major problems
for memory management are identified:
§ memory protection and address relocation.

¡ A simple possibility to solve the relocation is
to modify instructions while they are loaded
in memory.
§ We cannot solve memory protection by using this

rudimentary technique: user programs are able to
generate new instructions and determine jumps to
these instructions. (OS/MFT)

PROTECTION AND RELOCATION

THE RELOCATION PROBLEM

The relocation problem:
a)  A 16 KB program
b)  Another 16 KB program
c)  The two programs loaded

simultaneously in memory!

¡ A second variant makes the presumption that
the memory is divided into small blocks of 2K,
each block being protected by a 4-bits code,
which is stored in the PSW.
§ This mechanism is able to offer protection since the

only application able to modify protection codes is
the operating system itself.

¡ Any attempt to access a (memory) block with
a different protection code is promptly
sanctioned by issuing a trap. (typical for
OS360)

PROTECTION AND RELOCATION

¡ The solution for these two problems, widely used
on Intel 8088 based systems, or CDC 6600 based
systems, uses a pair of registers: the base
register and the limit register (see also
introductory lectures)

¡ Addresses are verified against the two values
stored in the registers
§ The only application able to modify these registers is

the operating system.
§ More, there is a hardware protection mechanism for

these the two registers.
¡ This solution has, however, a major disadvantage:

each memory reference requires several
compares and additions.
§ The solution is acceptable for operating systems

running on micro-computers.

PROTECTION AND RELOCATION

PROTECTION AND
RELOCATION

Base and limit
registers can be used
to give each process a
separate address
space.

Swapping MEMORY MANAGEMENT

¡ For batch processing systems, a simple
memory organization, based on fixed memory
partitions, is enough to guarantee job
execution and to maintain a high level of
processor usage.

¡ For a time-shared system it is difficult to offer
all the necessary resources to permanently
store all processes in memory.

¡ For this kind of operating system, some of the
existing jobs are temporarily stored on the
disc, and reloaded into memory in a dynamic
manner.

SWAPPING

¡  There are two major (and distinct)
strategies:

1.  The entire process is stored/reloaded into
memory. This strategy is usually called
swapping.

2.  Processes can be executed even if they are
partially loaded into memory. This time we
are talking about virtual memory.

SWAPPING

SWAPPING

¡ The swapping mechanism is quite simple, as
shown in the picture below. Shaded regions
are unused memory:

OS OSOSOSOS

A A

C

B B B

C

D D

C

OS

A

B

C

OS

D

C

A

¡ For swapping, the size, position and the
number of partitions are dynamically
modified, as (new) processes enter or leave
the system.

¡ Observe that the problems related with
partition sizes disappear.
§ However, there are some complications related with

memory allocation and memory usage.
¡ Swapping technique can lead in time to

several small holes in memory.
§ It is possible to have a situation when a program

cannot be executed, even if there is enough (total)
memory space.

SWAPPING

¡ In our initial example, after process D leaves
the system, process B cannot enter the
system, since the available contiguous space
is to small, even if the total amount of
available space is enough for this task!
§ Memory compacting techniques are used in order

to transform a large amount of small memory holes
into a small amount of large memory holes.

§ However, these techniques are time-consuming, so
they are used only as a last solution.

SWAPPING

¡ There is a different problem related with the
amount of memory allocated to processes:
§ In the most simple situation, there are processes

which do not require more memory during their
existence than the initially allocated memory. For
these processes there are is no special treatment
from the operating system.

§ For the dynamic processes, one or several program
segments are able to grow, based on process
execution pattern.

§ Several interesting management issues can be
identified:

SWAPPING

1.  In the “lucky situation”, there is an extra memory
block adjacent to the process:

§  the operating system could offer this extra memory
block to the process.

2.  Most of the processes are not so “lucky”:
§  the process is going to move to another position in

memory, where there is enough space.
§  If there is not enough space, the operating system

could preempt several processes in order to be able to
offer the necessary space.

§  If there is still not enough space, the process itself
could be preempted until there is a hole able to hold
the entire process.

3.  If a process cannot grow in memory and cannot be
preempted, then it is going to wait in memory.
§  The final solution is to destroy the process, when this

requires more than the operating system is able to
offer…

SWAPPING

SWAPPING

(a) Allocating space for growing data segment.
(b) Allocating space for growing stack, growing data

segment.

¡ A simple solution to this problem:
§ To offer more memory to processes while they are

loaded in memory or moved to another location.
¡ When a process is going to use two dynamic

segments (Stack and Data, for example), the
operating system has another possibility:
§ To offer some extra space between these two

segments, and to specify that these segments are
going to grow in opposite directions, using the
“shared” extra space.

SWAPPING

Memory
management
techniques

SWAPPING

¡ Bitmaps offer a simple follow-up technique for
memory usage.
§ In this situation the memory is divided into several

allocation units.
§ For each allocation unit there is a bit specifying if

the allocation unit is free or occupied.
¡ The allocation map is permanently stored into

memory, so the size of the allocation unit is
very important.
§ E.g. For an allocation unit of 4 bytes, the allocation

map requires 1/33 of memory space.

SWAPPING. MANAGEMENT BY BITMAPS.

¡ A small allocation size correspond with a large
allocation map;
§ A large allocation size could lead to large quantities

of lost memory, since it is possible to have large
quantities of unused memory in an allocation unit.

¡ On the other hand, any decision to load a
process whose size is made up of k allocation
units requires a sequence of k consecutive
“free”-bits in the allocation map.
§ Since the memory allocation map is stored in

several consecutive bytes, this is not a trivial
search.

SWAPPING. MANAGEMENT BY BITMAPS.

SWAPPING. MANAGEMENT BY
BITMAPS.

(a) A part of memory with five processes and three holes.
The tick marks show the memory allocation units. The
shaded regions (0 in the bitmap) are free.

(b) The corresponding bitmap.
(c)  The same information as a list.

¡ There is another major method for following-
up memory usage: use of chained lists of used
and free (holes) memory segments.
§ For each memory zone the list stores the start

address and the size. The list is sorted by start
addresses.

§ When freeing a memory zone, one could obtain a
free zone of at least the same size, after eventually
combining the freed memory zone with another
free, adjacent, memory zone.

§ In order to allocate free memory to processes,
there are several algorithms that can be used:

SWAPPING. CHAINED LISTS.

SWAPPING. CHAINED LISTS.

Four neighbor combinations for the terminating
process, X.

Algorithms
for chained
lists
management

SWAPPING

¡  This is the simplest algorithm:
§  parse the list of segments until one can find the first segment able to

hold the process.
§  This segment is divided in two parts: one for the process and the

other as a smaller hole.

SWAPPING. FIRST FIT

¡  This algorithm is a simple variation of the previous one:
§  next search is started where previous search stopped.
§  In this way it is possible to have a fast fit, since first segment could

be a free (hole) segment.

SWAPPING. NEXT FIT

¡ In this algorithm the entire list is searched for
the segment that best fits with the process.
§ The algorithm tries to avoid dividing large segments

when there are smaller segments available.
§ The results are not as expected, since it is possible

to obtain a large amount of small-sized holes.

SWAPPING. BEST FIT

¡ In order to avoid previous problem, now we are
going to choose the largest available segment.
Not so good idea for large programs.
§ The overall performance of this algorithm is not so

bad, but not better than the first two algorithms.
§ Observe that one can speed-up these algorithms by

offering distinct lists for processes and holes.
§ However there is a high price for this: complex list

management.

SWAPPING. WORST FIT.

¡ This time there are several lists for holes,
based on the most used sizes.
§ New segments are stored in the most appropriate

list (based on segment size).
§ The algorithm is able to quickly offer segments of

the right size. However, it could be difficult to have
an efficient memory compacting algorithm.

§ However, a memory compacting technique is
required in order to prevent excessive memory
fragmentation.

SWAPPING. QUICK FIT.

Memory
management
problems

SWAPPING

¡ Internal fragmentation:
§ this is a problem that occurs in the case of fixed-sized

partitions. In this situation it is expected that programs are
not able to use the entire space of a partition.

¡ Each partition is carrying with itself some unused
space.

¡ The problem of the internal space of a partition that
is unused due to a partition that is too large
compared with the necessary amount of memory is
the problem of internal fragmentation.

SWAPPING. MEMORY FRAGMENTATION
(INTERNAL)

¡ There is a similar situation for the case of dynamic
partitions, due to the large amount of small-sized
holes created after several operations of memory
allocation.

¡ The problem of holes existing between the different
allocated segments (processes) in memory is the
problem of external fragmentation. Observe that, in
this situation, the unallocated memory becomes
more fragmented in time.

¡ One can eliminate external fragmentation by using
some costly compacting techniques.

SWAPPING. MEMORY FRAGMENTATION
(EXTERNAL)

¡ Internal fragmentation is a major
disadvantage both for systems based on fixed
partitions and dynamic partitions.

¡ For dynamic partitions, external fragmentation
could be “avoided” by using some compacting
techniques.

¡ Buddy partitions were developed by Peterson
and Knuth in order to minimize the effects of
(internal and external) fragmentation.

SWAPPING. BUDDY PARTITIONS

1. The size of a memory block is of the form 2^k, where L<=k<=U.

2. The entire memory space is a block of size 2^U.

3. If there is a request for a space s between 2^{U-1} and 2^U, the entire memory
space is allocated.

4. If the request is for a smaller size, the entire space is divided in two identical blocks,
of size 2^{U-1}.

5. A request for a space s between 2^{U-2} and 2^{U-1} is satisfied by one of these
blocks.

6. The process continues until there is a block of size 2^{U-k}, such that 2^{U-k-1}
<s<=2^{U-k}.

7. When freeing a block, it is going to be compacted with its buddy block, if both of
them are free.

Even if this algorithm is quite simple, it is not so efficient. However, it could be in use
for some UNIX systems, to solve internal tasks of the kernel.

SWAPPING. BUDDY PARTITIONS

Virtual
memory MEMORY MANAGEMENT

¡ The software development led to
applications that are not able to fit in the
physical (available) memory.

¡ The different swapping technologies
used in multi-programmed systems, are
not able to offer the possibility to go over
the size of the physical memory.

¡ One of the initial solutions proposed to
go over this memory limitations was
based on splitting programs in several
parts, named overlays.

VIRTUAL MEMORY. OVERLAYS

¡ The execution of a program is starting now with
its first available part. Once this part is executed,
another part is loaded from the disc.

¡ The operating system offers the possibility to
keep in memory several parts (overlays) of a
program. Thus, issues related with their
management and design are quite difficult.

¡ The operating system is able to offer the
necessary support for loading and unloading, in a
dynamic manner, of the different parts
(segments) of a program.

¡ However, splitting programs into several parts is
a manual operation, realized by the programmer
itself.

VIRTUAL MEMORY. OVERLAYS

¡ By automating the task of splitting programs
in several parts (initially proposed by
Fotheringham), the very first techniques of
virtual memory were introduced.

¡ In this situation, the operating system is going
to detect by itself if an application must be
split into several parts, and to detect how it
can realize this split.

¡ In a multi-programmed system, a process that
is waiting for a segment to be loaded in
memory is considered as being suspended for
an input/output operation.

VIRTUAL MEMORY. OVERLAYS

¡ Paging is a basic technique for systems based on
virtual memory.

¡ In a computing system there is a possibility to
generate a limited amount of addresses.
However, these addresses can be over the
available physical memory:
§ E.g: for a 16 bits system, one can generate addresses

up to the 64K limit. For these systems it was possible to
have a physical memory of only… 32K.

¡ Addresses generated by applications are called
virtual addresses, and they form the space of
virtual addresses, sometimes different from the
space of physical addresses. In order to solve
these differences, virtual addresses are mapped
on physical addresses through the MMU.

PAGING

PAGING

j

The position and function of the MMU – shown as
being a part of the CPU chip (it commonly is
nowadays).

¡  If the space of virtual addresses is higher than the space
of physical addresses, even if one can construct
applications that are able to use the entire virtual space,
observe that now it is impossible to load such an
application in memory.

¡ The space of virtual addresses is usually divided into
several pages of addresses. There is a correspondent for
these pages in the physical memory: page frames.

¡ The requests for memory accesses are now solved as
follows:
§ First identify the corresponding virtual page of addresses.
§ For this page, now we are going to identify the frame page

on which it is mapped.
§ The “real” address is now computed by the MMU, relative

to the starting address of the frame page, using the same
offset as in the page of addresses.

PAGING

PAGING

Relation between
virtual addresses and
physical memory
addresses given by
page table.
Every page begins
on a multiple of 4096,
ends 4095 addresses
higher, so 4K–8K really
means 4096–8191 and
8K to 12K means
8192–12287.

§ If the page of addresses is not mapped on
any frame page, a page fault is issued,
which is going to determine a replacement
of one of the pages already mapped in
memory with the newly accessed page.
§ In order to support this operation, usually a

presence bit is used. This bit is able to signal
if a virtual page is already mapped on a frame
page.

§ After solving this remapping, the initial
mapping process is re-starting by the MMU.

PAGING

¡ Internal MMU operations are solved as
follows:
§ A virtual address on 16 bits is decomposed in

a virtual page number (on 4 bits) and an offset
(12 bits).

§ The virtual page number is used as an index in
a page table, to determine the value of the
frame page. If the presence bit is not set, a
page remapping process is first performed.

§ The page number (now, only 3 bits) is
appended to the offset, together they form the
physical address.

PAGING

PAGING. INTERNAL MMU
OPERATIONS

The internal
operation of the
MMU with 16
4-KB pages.

¡ Page tables were developed in order to support the
mapping process from virtual pages to physical
pages.

¡ A page table has to answer to several requirements,
coming from the following observations:
§ The size of a page table could be very big;
§ The mapping process must be solved very fast;

¡ E.g. For a 32 bit system, with a page size of only 4K,
the total number of virtual pages is 1048576… Each
process will use a page table of this size!

PAGING. PAGE TABLES.

¡ The mapping is performed on every memory
operation, and it is supposed to have one or more
references to the page table. For efficient tables,
one must have very short access times.

¡ A possible solution is to let the operating system to
load the page table on an array of fast hardware
registers. However, this is a costly solution, since
this table could be quite large.

¡ An alternative to this solution is to keep the entire
table in memory for a process, and to use only one
register to keep the start address of the table in
memory. However, the mapping process is quite
slow, since now we need a couple of references to
memory.

PAGING. PAGE TABLES

PAGING. MULTILEVEL PAGE
TABLES

(a) A 32-bit address with two
page table fields.

(b) Two-level page tables.

¡  In order to avoid keeping in memory the entire page
table, one can use a solution based on multi-level tables.

¡ Thus, for 32 bits addresses, the necessary amount of
pages, at a size of 4K, is 220.

¡  In a multi-level solution, the 32 bits address is divided in
three parts: 10+10+12 bits.

¡ First 10 bits are used for an indexation in the higher level
table (size: 4M).

¡ By using this information, the next 10 bits are used for
an indexation in the identified level 2 table.

¡ Finally, the last 12 bits are used to identify the address
inside the frame page.

¡  In this situation we are going to use again paging faults
in order to signal that a page is not present in memory
and to request its loading.

¡ Usually, an application is going to use only 4 tables: one
on level 1 and 3 on level 2.

PAGING. PAGE TABLES

PAGING. PAGE TABLES

A typical page table entry

¡ The following information could be stored in entries
from a page table:
§ The “caching” bit: used to avoid page caching; useful for

systems that are mapping pages on I/O registers.
§ Reference bit: this bit is set on every reference to a page. Used

to preempt pages from memory.
§ Modification bit (dirty bit): used to specify if the page was

modified, to detect if it must be saved.
§ Protection bits: used to specify different types of access that

are allowed.
§ Presence bit.
§ Frame page number.

PAGING. PAGE TABLES

¡ The different paging schemes are
keeping page tables in memory, even if
they are quite big.

¡ Using paging could have a bad impact
over the performance of the entire
system, since every memory access
requires supplemental accesses due to
the usage of… page tables.

¡ However, most of computer programs are
using a large amount of references to a
small amount of pages.

PAGING. ASSOCIATIVE TABLES

¡ The associative memory is only a hardware
device, integrated in the MMU, that has
several entries. It is used to quickly solve the
mapping of virtual addresses on physical
addresses, avoiding the usage of page tables.

¡ An entry in the associative memory area could
contain information like: virtual page number,
the modification bit, the protection code, the
(physical) frame page, and an extra bit
indicating used pages.

PAGING. ASSOCIATIVE TABLES

¡ The function of TLB (Translation Lookaside
Buffers) is as follows:
§ MMU receives a virtual address for translation: verify

first if the associated physical page is in TLB.
§ If there is a math, and if the values for protection bits

are correct, the frame page is picked from the TLB;
otherwise a page fault is issued.

§ If there is no match, the page is searched via the
MMU by using the ordinary page tables mechanism;
then a TLB entry is replaced with the new entry.

PAGING. ASSOCIATIVE TABLES

PAGING. TRANSLATION
LOOKASIDE BUFFERS

TLB structure for speeding up paging

¡ Traditional page tables offer one entry for each
virtual page. For a system on 32 bits, the size of a
page table could be only 4M.

¡ For a 64 bits system, the table could reach a size of
264/212, approx. 33554432G!

¡ The inverted table is trying to offer an alternative
solution: instead of having an entry for each virtual
page, we are going to keep in memory an entry for
every frame page.

¡ Each entry is able now to emphasize their
“inhabitants”. A reference to a virtual page is now
solved through a search in the entire table…

PAGING. INVERTED TABLES

PAGING. INVERTED TABLES

Traditional page table vs. inverted page table

Page
replacement
algorithms

PAGING.

¡ When there is a pagination error, the
operating system is obliged to identify the
page to be eliminated from memory, to make
room for a new page.

¡ There are several policies to be used for this
process: random choice; choosing a page with
low usage; choosing a page in a pre-
determined order, etc.

REPLACEMENT ALGORITHMS

¡  Optimal page replacement algorithm
¡  Not recently used page replacement
¡  First-In, First-Out page replacement
¡  Second chance page replacement
¡  Clock page replacement
¡  Least recently used page replacement
¡ Working set page replacement
¡ WSClock page replacement

REPLACEMENT ALGORITHMS

¡ This algorithm is based on a very simple idea:
whenever there is a pagination error, there is only
one page to be referred for the next instruction.

¡ The idea is to label pages with the number of
next instructions to be executed, in order: one
should eliminate the page with the higher label
available.

¡ This algorithm is hard to be used in a real
system, since the operating system is not able to
predict the moments when it is going to use the
different memory pages. However, the simulation
of this algorithm could be useful in order to
model the “real” algorithms.

OPTIMAL ALGORITHM

¡  This algorithm is based on two distinct bits: R (reference to a page),
and M (modified page). These two bits are updated on each
reference to memory.
§  When a process is started, all entries are marked as not being present in

memory: first access is going to generate a pagination error.
§  Following this initial step, the R bit is set and the corresponding entry in the

page table is modified.
§  When the page is modified, a pagination error is issued, such that the

operating system is able to operate on the M bit.
¡  Based on these observation, the algorithm is as follows:

§  When a process is starting, the R and M bits are unset for all pages.
§  From time to time, the R bit is reset. This is necessary to make the difference

between recently referred pages and not-referred pages.
§  When a paging error is issued, all pages are classified in one of the following

categories:
§  0: not-referred and not-modified pages
§  1: not-referred pages but modified
§  2: referred pages but not-modified
§  3: referred and modified pages

§  The operating system randomly choose a page from the lowest available
class.

NRU ALGORITHM

¡ The idea of this algorithm is very simple: one
should choose the oldest available page in the
system.

¡ For this task, the operating system is
maintaining a list of all pages in the system.
First page in the list is the oldest page…

¡ When there is a pagination error, one should
choose the first page in the list.

FIFO ALGORITHM

¡ This algorithm is based on the observation
that FIFO algorithm is able to eliminate a
useful page (old, but intensely used).

¡ This algorithm is trying to avoid this operation
for a recently used page: if the R bit is set, the
page is moved to the end of the list, with the
R bit unset.

¡ If the R bit is not set, the page is eliminated
and saved if necessary (the M bit is also set).

SECOND CHANCE ALGORITHM

SECOND CHANCE ALGORITHM

Operation of second chance.
(a) Pages sorted in FIFO order.
(b) Page list if a page fault occurs at time 20 and A has its R
bit set. The numbers above the pages are their load times.

¡ Previous algorithm requires an intense activity
for page list management.

¡ The clock algorithm is based on a circular list,
where there is a pointer for the oldest page in
the system.

¡ This time, a pagination error is followed by a
replacement of the page if the R bit is not set,
or change the pointer to next page, and reset
the R bit.

CLOCK ALGORITHM

CLOCK ALGORITHM

¡ This algorithm is based on the idea that intensely
used pages are supposed to have an intense usage in
the future. When there is a pagination fault, one of
the unused pages is going to be removed from
memory.

¡ This algorithm could have a high cost: one must keep
a list of pages that are in memory, and to
permanently update this list based on page usage.

¡ This algorithm could be used if there is some
hardware support. For example, a hardware device
containing a matrix of nxn bits, initially unset. On a
reference to a frame page k, the bits on the kth line
are set and those on the kth column are unset. The
page with the lowest binary value is chosen for
replacement.

THE LRU ALGORITHM

LRU ALGORITHM

The LRU algorithm, using a matrix when pages are
referenced in the order 0, 1, 2, 3, 2, 1, 0, 3, 2, 3.

LRU ALGORITHM

The aging algorithm simulates LRU in software.
Shown are six pages for five clock ticks.
The five clock ticks are represented by (a) to (e).

1.  The hardware traps to the kernel, saving the program
counter on the stack.

2.  An assembly code routine is started to save the general
registers and other volatile information.

3.  The operating system discovers that a page fault has
occurred, and tries to discover which virtual page is needed.

4.  Once the virtual address that caused the fault is known, the
system checks to see if this address is valid and the
protection consistent with the access

PAGE FAULT HANDLING

5.  If the page frame selected is dirty, the page is scheduled for
transfer to the disk, and a context switch takes place.

6.  When page frame is clean, operating system looks up the
disk address where the needed page is, schedules a disk
operation to bring it in.

7.  When disk interrupt indicates page has arrived, page tables
updated to reflect position, frame marked as being in
normal state.

PAGE FAULT HANDLING

8.  Faulting instruction backed up to state it had when it began
and program counter reset to point to that instruction.

9.  Faulting process scheduled, operating system returns to the
(assembly language) routine that called it.

10.  This routine reloads registers and other state information
and returns to user space to continue execution, as if no
fault had occurred.

PAGE FAULT HANDLING

SEGMENTATION

¡  In the case of virtual memory the addresses are in a fixed
range of values, starting from a minimal value (usually 0)
and going to a maximum, and the values being specified
as successive values.

¡ Many problems could rely on the existence of two or
many distinctive spaces of addresses. For example, a
compiler could use during its functioning at least five
different tables.

¡ The solution that one can consider is to offer to the
machine a large number of distinct address spaces,
called segments.
§ A segment is a linear space of addresses.
§ Different segments could have different sizes.
§ Segment dimensions modify in time based on application

needs.
¡  In order to represent addresses in a bi-dimensional space

one must identify two parts: segment number and the
internal address.

SEGMENTATION

¡ By using segmented memory one can simplify the
handling of data structures with variable dimensions.

¡ Linking compiled procedures is a simple process:
§  just put every procedure in a separate segment; a call to a

procedure is translated to an address of the form (n,0),
where n is the segment holding the procedure.

¡ Segmentation could also offer the possibility to share
procedures or data between several processes.

SEGMENTATION

¡  Segmentation implementation is dif ferent from pagination
implementation. Segment sizes are very different, opposed to
page sizes.

¡  In this case, external segmentation is a crude reality, after
enough segment load/unload operations from memory.

PURE SEGMENTATION

PURE SEGMENTATION

Comparison of paging and segmentation

SEGMENTATION.
CHECKERBOARDING

Checkerboarding development and removal by compaction

