
OPERATING SYSTEMS II
DPL. ING. CIPRIAN PUNGILĂ, PHD.

I/O. Storage Devices.
A LOOK INSIDE THE MACHINE

B I B L I O G R A P H Y
1 . A . TA N N E N B A U M , “ M O D E R N O P E R AT I N G S Y S T E M S ”, 3 R D E D I T I O N , 2 0 0 8 , P R E N T I C E H A L L
2 . S I L B E R S C H AT Z , G A L V I N , A N D G A G N E , " O P E R AT I N G S Y S T E M C O N C E P T S " , 8 T H E D I T I O N , 2 0 0 9 , W I L E Y

Input/Output (I/O) Principles

Hardware I/O. Controller. DMA.
I/O devices have both a mechanical and an
electronic component (device controller)

Device controller
Control logic

Command registers

Status registers

On-board buffer space

Input/Output (I/O) Principles

I/O Ports & Memory Mapped I/O
I/O approaches
Separate I/O and memory space
Special I/O commands (IN/OUT)

Memory-mapped I/O

Known issues
Convenience/efficiency when using a high-

level language

Protection mechanisms

Special data access scheme: TEST

Caching

Input/Output (I/O) Principles

Direct Memory Access (DMA)
Are the addresses the CPU sends to the
DMA controller virtual or physical addresses?

Can the disk controller directly read data
into the main memory (bypassing the
controller buffer)?

Input/Output (I/O) Principles

Direct Memory Access (DMA)
A device driver using DMA has to talk to
hardware connected to the interface bus, which
uses physical addresses, whereas program code
uses virtual addresses

DMA-based hardware uses bus, rather
than physical, addresses

Linux kernel support: <asm/io.h>
 unsigned long virt_to_bus(volatile void *address);

 void *bus_to_virt(unsigned long address);

Input/Output (I/O) Principles

How to accomplish I/O?
Polling-based
CPU spins and polls the I/O until finished

Periodic polling
Continous polling consumes too much CPU

Saves CPU overhead

May not react immediately to hadware events

Interrupt-driven
CPU initiates I/O then focuses on something else

We get notifications when the I/O is done (interrupts)

Input/Output (I/O) Principles

Interrupt Handlers
Save registers of old process

Setup context for interrupt service procedure
Switch from user-space to kernel-space
MMU
Stack
…

Run service procedure
When safe, re-enable interrupts

Run scheduler to choose new process to run next

Setup context (MMU, registers) for process to run next

Start running the new process

How costly is this?
Gigabit Ethernet: each packet arrives every 12us

Input/Output (I/O) Principles

Interrupt Vectors
A non-maskable interrupt (NMI) is an interrupt that cannot be ignored by standard interrupt
masking techniques in the system
It is typically used to signal attention for non-recoverable hardware errors

Intel Pentium
0: divide by zero

6: invalid opcode

11: segment not present

12:stack fault

14: page fault

…31: non-maskable

32-255: maskable interrupts

Input/Output (I/O) Principles

I/O Software Layers
Device-dependent OS I/O software
Directly interacts with controller hardware

Interface to upper-layer OS code is standardized

Input/Output (I/O) Principles

Device Driver Reliability
A device drive is a device-specific part of the kernel-space I/O software
Includes interrupt handlers

Must run in kernel mode
Crashing often brings down the entire system

The buggiest part of an OS

How to make the system more stable by isolating faults in device drivers?
Run most of the device driver code at user level

Restrict and limit device driver operations in the kernel

Input/Output (I/O) Principles

High-Level I/O Software
Device independence
Reuse software as much as

possible across different types of
devices

Buffering
Data coming off a device is

stored in an intermediate buffer

Access speed/granularity
matching with I/O devices

Caching

Speculative I/O

Input/Output (I/O) Principles

Disk Drives – Mechanical Components
Disk drives are addressed as large 1-
dimensional arrays of logical blocks,
where the logical block is the smallest
unit of transfer

The 1-dimensional array of logical
blocks is mapped into the sectors of
the disk sequentially
First sector: sector 0 (first track on the

outermost cylinder)

Mapping proceeds in order through
that track, then the rest of the tracks
in that cylinder, then through the rest
of cylinders (from outermost to
innermost)

Input/Output (I/O) Principles

Disk Performance Characteristics
Three major components
Seek – moving the heads to the cylinder containing the desired sector

Rotation – rotating the desired sector to the disk head

Transfer – sequentially moving data to or from disk

Input/Output (I/O) Principles

Disk Scheduling
Choose from outstanding disk requests when the disk is ready for a new request
Can be done in both disk controller and the operating system

Disk scheduling is non-preemptible

Goals of disk scheduling
Overall efficiency
Small resource consumption for competing I/O disk workload

Fairness
Prevent starvation

Input/Output (I/O) Principles

Disk Scheduling - FCFS
First Come First Serve
Total head movement: 640

Starvation?

Input/Output (I/O) Principles

Disk Scheduling - SSTF
Shortest Seek Time First
Select request with minimum seek

time from the current head position

SSTF scheduling is a form of SJF
scheduling

Total head movement: 236

Starvation?

Input/Output (I/O) Principles

Disk Scheduling - SCAN
Disk arm starts at one end of the
disk, moves toward the other end,
servicing requests until it gets to
the other end, where the head
movement is reversed and servicing
continues

Elevator algorithm

Total head movement: 208

Starvation?

Input/Output (I/O) Principles

Disk Scheduling – C-SCAN
Circular SCAN
Provides a more uniform wait time

than SCAN

Head moves from one end of the
disk to the other

Servicing requests as it goes

When it reaches the other end,
immediately returns to the
beginning of the disk, without
servicing any requests on the return
trip

Starvation?

Input/Output (I/O) Principles

Disk Scheduling – C-LOOK
Variation of C-SCAN

Arm goes as far as the last request
in each direction, then reverses
direction, without first going all the
way to the end of the disk

Input/Output (I/O) Principles

Deadline Scheduling In Linux
Regular elevator-style scheduling similar to C-LOOK

Additionally, all I/O requests are put into the FIFO queue with an expiration time (e.g. 500ms)

When the head request in the FIFO queue expires, it will be executed next (even if it is not next
in line according to C-LOOK)

A mix of performance and fairness

Input/Output (I/O) Principles

Concurrent I/O
Consider two request handlers in a Web server
Each accesses a different stream of sequential data (file) on disk

Each reads a chunk (the buffer size) at a time, does a little CPU processing, and reads the next chunk

What happens?

Input/Output (I/O) Principles

Concurrent I/O - Implementations
Aggressive prefetching

Anticipatory scheduling
At the completion of an I/O request, disk scheduler waits a bit (despite the fact that there is other work

to do), in anticipation that a new request with strong locality will be issued

Schedule another request if no such new request appears before timeout

Included in Linux kernel 2.6

Input/Output (I/O) Principles

Concurrent I/O – Exploiting Concurrency
RAID – Redundant Array of Inexpensive Disks
RAID 0: data stripping at block level, no redundancy

RAID 1: mirrored disks (100% overhead)

RAID 2: bit-level stripping with parity bits, synchronized writes

RAID 3: data stripping at the bit level with parity disk, synchronized writes

RAID 4: data stripping at block level with parity disk

RAID 5: scattered parity

RAID 6: handles multiple disk failures

Input/Output (I/O) Principles

Disk Management
Formatting
Header: sector number, etc.

Footer/tail: ECC codes

Gap

Initialize mapping from logical block number to defect-free sectors

Logical disk partitioning
One or more groups of cylinders

Sector 0: master boot record loaded by BIOS firmware, which contains partition information

Boot record points to boot partition

Input/Output (I/O) Principles

Swap File Management
Part of the file system?
Requires navigating directory structure

Disk allocation data structures

Separate disk partition
No file system or directory structure

Optimize for speed rather than storage efficiency

When do we create swap space?

