
OPERATING SYSTEMS II
DPL. ING. CIPRIAN PUNGILĂ ,  PHD.



I/O. Storage Devices.
A LOOK INSIDE THE MACHINE

B I B L I O G R A P H Y
1 .  A .  TA N N E N B A U M ,  “ M O D E R N  O P E R AT I N G  S Y S T E M S ”,  3 R D E D I T I O N ,  2 0 0 8 ,  P R E N T I C E  H A L L
2 .  S I L B E R S C H AT Z ,  G A L V I N ,  A N D  G A G N E ,  " O P E R AT I N G  S Y S T E M  C O N C E P T S " ,  8 T H  E D I T I O N ,  2 0 0 9 ,  W I L E Y



Input/Output (I/O) Principles

Hardware I/O. Controller. DMA.
I/O devices have both a mechanical and an 
electronic component (device controller)

Device controller
Control logic

Command registers

Status registers

On-board buffer space



Input/Output (I/O) Principles

I/O Ports & Memory Mapped I/O
I/O approaches
Separate I/O and memory space
Special I/O commands (IN/OUT)

Memory-mapped I/O

Known issues
Convenience/efficiency when using a high-

level language

Protection mechanisms

Special data access scheme: TEST

Caching



Input/Output (I/O) Principles

Direct Memory Access (DMA)
Are the addresses the CPU sends to the 
DMA controller virtual or physical addresses?

Can the disk controller directly read data 
into the main memory (bypassing the 
controller buffer)?



Input/Output (I/O) Principles

Direct Memory Access (DMA)
A device driver using DMA has to talk to 
hardware connected to the interface bus, which 
uses physical addresses, whereas program code 
uses virtual addresses

DMA-based hardware uses bus, rather 
than physical, addresses

Linux kernel support: <asm/io.h>
 unsigned long virt_to_bus(volatile void *address);

 void *bus_to_virt(unsigned long address);



Input/Output (I/O) Principles

How to accomplish I/O?
Polling-based
CPU spins and polls the I/O until finished

Periodic polling
Continous polling consumes too much CPU

Saves CPU overhead

May not react immediately to hadware events

Interrupt-driven
CPU initiates I/O then focuses on something else

We get notifications when the I/O is done (interrupts)



Input/Output (I/O) Principles

Interrupt Handlers
Save registers of old process

Setup context for interrupt service procedure
Switch from user-space to kernel-space
MMU
Stack
…

Run service procedure
When safe, re-enable interrupts

Run scheduler to choose new process to run next

Setup context (MMU, registers) for process to run next

Start running the new process

How costly is this?
Gigabit Ethernet: each packet arrives every 12us



Input/Output (I/O) Principles

Interrupt Vectors
A non-maskable interrupt (NMI) is an interrupt that cannot be ignored by standard interrupt 
masking techniques in the system
It is typically used to signal attention for non-recoverable hardware errors

Intel Pentium
0: divide by zero

6: invalid opcode

11: segment not present

12:stack fault

14: page fault

…31: non-maskable

32-255: maskable interrupts



Input/Output (I/O) Principles

I/O Software Layers
Device-dependent OS I/O software
Directly interacts with controller hardware

Interface to upper-layer OS code is standardized



Input/Output (I/O) Principles

Device Driver Reliability
A device drive is a device-specific part of the kernel-space I/O software
Includes interrupt handlers

Must run in kernel mode
Crashing often brings down the entire system

The buggiest part of an OS

How to make the system more stable by isolating faults in device drivers?
Run most of the device driver code at user level

Restrict and limit device driver operations in the kernel



Input/Output (I/O) Principles

High-Level I/O Software
Device independence
Reuse software as much as 

possible across different types of 
devices

Buffering
Data coming off a device is 

stored in an intermediate buffer

Access speed/granularity 
matching with I/O devices

Caching

Speculative I/O



Input/Output (I/O) Principles

Disk Drives – Mechanical Components
Disk drives are addressed as large 1-
dimensional arrays of logical blocks, 
where the logical block is the smallest 
unit of transfer

The 1-dimensional array of logical 
blocks is mapped into the sectors of 
the disk sequentially
First sector: sector 0 (first track on the 

outermost cylinder)

Mapping proceeds in order through 
that track, then the rest of the tracks 
in that cylinder, then through the rest 
of cylinders (from outermost to 
innermost)



Input/Output (I/O) Principles

Disk Performance Characteristics
Three major components
Seek – moving the heads to the cylinder containing the desired sector

Rotation – rotating the desired sector to the disk head

Transfer – sequentially moving data to or from disk



Input/Output (I/O) Principles

Disk Scheduling
Choose from outstanding disk requests when the disk is ready for a new request
Can be done in both disk controller and the operating system

Disk scheduling is non-preemptible

Goals of disk scheduling
Overall efficiency
Small resource consumption for competing I/O disk workload

Fairness
Prevent starvation



Input/Output (I/O) Principles

Disk Scheduling - FCFS
First Come First Serve
Total head movement: 640

Starvation?



Input/Output (I/O) Principles

Disk Scheduling - SSTF
Shortest Seek Time First
Select request with minimum seek 

time from the current head position

SSTF scheduling is a form of SJF 
scheduling

Total head movement: 236

Starvation?



Input/Output (I/O) Principles

Disk Scheduling - SCAN
Disk arm starts at one end of the 
disk, moves toward the other end, 
servicing requests until it gets to 
the other end, where the head 
movement is reversed and servicing 
continues

Elevator algorithm

Total head movement: 208

Starvation?



Input/Output (I/O) Principles

Disk Scheduling – C-SCAN
Circular SCAN
Provides a more uniform wait time 

than SCAN

Head moves from one end of the 
disk to the other

Servicing requests as it goes

When it reaches the other end, 
immediately returns to the 
beginning of the disk, without 
servicing any requests on the return 
trip

Starvation?



Input/Output (I/O) Principles

Disk Scheduling – C-LOOK
Variation of C-SCAN

Arm goes as far as the last request 
in each direction, then reverses 
direction, without first going all the 
way to the end of the disk



Input/Output (I/O) Principles

Deadline Scheduling In Linux
Regular elevator-style scheduling similar to C-LOOK

Additionally, all I/O requests are put into the FIFO queue with an expiration time (e.g. 500ms)

When the head request in the FIFO queue expires, it will be executed next (even if it is not next 
in line according to C-LOOK)

A mix of performance and fairness



Input/Output (I/O) Principles

Concurrent I/O
Consider two request handlers in a Web server
Each accesses a different stream of sequential data (file) on disk

Each reads a chunk (the buffer size) at a time, does a little CPU processing, and reads the next chunk

What happens?



Input/Output (I/O) Principles

Concurrent I/O - Implementations
Aggressive prefetching

Anticipatory scheduling
At the completion of an I/O request, disk scheduler waits a bit (despite the fact that there is other work 

to do), in anticipation that a new request with strong locality will be issued

Schedule another request if no such new request appears before timeout

Included in Linux kernel 2.6



Input/Output (I/O) Principles

Concurrent I/O – Exploiting Concurrency
RAID – Redundant Array of Inexpensive Disks
RAID 0: data stripping at block level, no redundancy

RAID 1: mirrored disks (100% overhead)

RAID 2: bit-level stripping with parity bits, synchronized writes

RAID 3: data stripping at the bit level with parity disk, synchronized writes

RAID 4: data stripping at block level with parity disk

RAID 5: scattered parity

RAID 6: handles multiple disk failures



Input/Output (I/O) Principles

Disk Management
Formatting
Header: sector number, etc.

Footer/tail: ECC codes

Gap

Initialize mapping from logical block number to defect-free sectors

Logical disk partitioning
One or more groups of cylinders

Sector 0: master boot record loaded by BIOS firmware, which contains partition information

Boot record points to boot partition



Input/Output (I/O) Principles

Swap File Management
Part of the file system?
Requires navigating directory structure

Disk allocation data structures

Separate disk partition
No file system or directory structure

Optimize for speed rather than storage efficiency

When do we create swap space?


