
OPERATING SYSTEMS II
DPL. ING. CIPRIAN PUNGILĂ, PHD.

LINUX
An In-Depth Profile
A DEEPER LOOK INSIDE THE FAMOUS OPERATING SYSTEM
A F T E R A L E C T U R E B Y T I M W O O D

B I B L I O G R A P H Y
1 . A . TA N N E N B A U M , “ M O D E R N O P E R AT I N G S Y S T E M S ”, 3 R D E D I T I O N , 2 0 0 8 , P R E N T I C E H A L L
2 . S I L B E R S C H AT Z , G A LV I N , A N D G A G N E , " O P E R AT I N G S Y S T E M C O N C E P T S " , 8 T H E D I T I O N , 2 0 0 9 , W I L E Y

Contents

Outline
History of the operating system

Design basics

General architecture

Process scheduling

Memory management

File systems

IPC – Interprocess communication

A review of the information from Operating
Systems I and how Linux behaves as a real

operating system

History

The Linux OS
Free operating system
 Based on UNIX standards

UNIX – what is it?
 Proprietary operating system

 Developed in the 60s

 Still used for mainframes

Linux was first developed in 1991 by Linus Torvalds
 Goal: providing basic UNIX functionality in a free system

Version 0.01 (May 1991)
 No networking

 Ran only on 80386 compatible Intel processors and on PC hardware

 Extremely limited device-driver support

 Only support the Minix file system

Version 2.6.34 (Summer 2010)
Most common OS for servers

 Supports dozens of file systems

 Runs on anything from smartphones to super computers All contributed by the Linux community!

History

About Linus Torvalds
Started the Linux kernel while a Masters student in Finland (1991)

About 2% of current Linux code was written by him
The rest is split between thousands of contributors!

Message on first Linux release:
“PS… It is NOT portable (uses 386 task switching etc) and it probably

will never support anything other than AT-harddisks, as that’s all I have :-(“

Now supports almost every hardware platform possible!

Who uses it?

Statistics for Linux (2010)

Who uses it?

Web Users (December, 2014)

Source: Wikipedia

Who uses it?

Desktop Users (December, 2014)

Source: Wikipedia

Design Basics

Principles
Linux is a multiuser, multitasking operating system with a full set of UNIX-compatible tools

 Its file system adheres to traditional UNIX semantics, and it fully implements the standard
UNIX networking model

Main design goals are speed, efficiency, and standardization

The Linux kernel is distributed under the GNU General Public License (GPL), as defined by the
Free Software Foundation
“Anyone using Linux, or creating their own derivative of Linux, may not make the derived product

proprietary; software released under the GPL must include its source code”

Kernel vs distributions

Variants
The Linux kernel is the core part of the operating system
scheduler, drivers, memory managers, etc.

A Linux distribution is the kernel plus the software needed to make the system actually usable
user interface, libraries, all user level programs, etc.

The Linux Operating System

Kernel Map

The Linux Operating System

Structure

Linux

Structure
Linux separates user and kernel mode to provide protection and abstraction
The OS functionality is split between the main Linux Kernel and optional kernel modules

Linux Kernel - all code that is needed as soon as the system begins: CPU scheduler, memory
managers, system call / interrupt support, etc
A monolithic kernel - benefits?

Kernel modules - extensions to the kernel that can be dynamically loaded or unloaded as
needed: device drivers, file systems, network protocol, etc
Provides some modularity - benefits?

Can specify whether each OS component is compiled into the kernel or built as a module, if you
build your own version of Linux from source code

Linux

Kernel Modules
Pieces of functionality that can be loaded and unloaded into the OS
Does not impact the rest of the system

OS can provide protection between modules

Allows for minimal core kernel, with main functionality provided in modules

Very handy for development and testing
Do not need to reboot and reload the full OS after each change

Also, a way around Linux’s licensing restrictions: kernel modules do not need to be released
under the GPL
Would require you to release all source code

Linux

Kernel Modules
Kernel maintains tables for modules such as:
Device drivers

File systems

Network protocols

Binary formats

When a module is loaded, add it to the table so it can advertise its functionality

Applications may interact with kernel modules through system calls

Kernel must resolve conflicts if two modules try to access the same device, or a user program
requests functionality from a module that is not loaded

Not all functionality can be implemented as modules – examples?

Linux

Process Management
Processes are created using the fork/clone and execve functions
fork - system call to create a new process

clone - system call to create a new thread
Actually just a process that shares the address space of its parent

execve - run a new program within the context created by fork/clone

Often programmers will use a library such as Pthreads to simplify API

Linux maintains information about each process:
Process Identity

Process Environment

Process Context

Linux

Process States

Linux

Process States

Linux

Process Identity
General information about the process and its owner

Process ID (PID) - a unique identifier, used so processes can precisely refer to one another
ps -- prints information about running processes

kill PID -- tells the OS to terminate a specific process

Credentials - information such as the user who started the process, their group, access rights,
and other permissions info

Linux

Process Environment
Stores static data that can be customized for each process

Argument Vector - list of parameters passed to the program when it was run
head -n 20 file.txt -- start the “head” program with 3 arguments

Environment Vector - a set of parameters inherited from the parent process with additional
configuration data
the current directory, the user’s path settings, terminal display parameters

These provide a simple and flexible way to pass data to processes
Allows settings to configured per-process rather than on a system oruser-wide level

Linux

Process Context
The dynamically changing state of the process

Scheduling context - all of the data that must be saved and restored when a process is
suspended or brought into the running state

Accounting information - records of the amount of resources being used by a process

File table - list of all files currently opened by the process

Signal-handler table - lists how the process should respond to signals

Virtual memory context - describes the layout of the process’s address space

Linux

Process Scheduling
The Linux scheduler must allocate CPU time to both user processes and kernel tasks (e.g.
device driver requests)

Primary goals: fairness between processes and an emphasis on good performance for
interactive (I/O bound) tasks

Uses a preemptive scheduler
What happens if one part of the kernel tries to preempt another?
Prior to Linux 2.4, all kernel code was non-preemptable

Newer kernels use locks and interrupt disabling to define critical sections

Linux

Process Scheduling
Scheduler implementation has changed several times over the years

Kernel 2.6.8: O(1) scheduler
Used multi-level feedback queue style scheduler

Lower priority queues for processes that use up full time quantum

All scheduling operations are O(1), constant time, to limit scheduling overhead even on systems with
huge numbers of tasks

Kernel 2.6.23: Completely Fair Scheduler
Uses red-black trees instead of run queues (not O(1))

Tracks processes at nano-second granularity -> more accurate fairness

Linux

Memory Management
User processes are granted memory using segmented demand paging
Virtual memory system tracks the address space both as a set of regions (segments) and as a list of

pages

Pages can be swapped out to disk when there is memory pressure
Uses a modified version of the Clock algorithm to write the least frequently used pages out to disk

Kernel memory is either paged or statically allocated
Drivers reserve contiguous memory regions

The slab allocator tracks chunks of memory that can be re-used for kernel data structures

Linux

Caches
Linux maintains caches to improve I/O performance

Buffer Cache - stores data from block devices such as disk drives
All pages brought from disk are temporarily stored in buffer cache in case they are accessed again

Page Cache - caches entire pages of I/O data
Can store data from both disks and network I/O packets

Caches can significantly improve the speed of I/O at the expense of RAM
Linux automatically resizes the buffer and page caches based on how much memory is free in the

system

Linux

File Systems
Virtual File System layer provides a standard interface for file systems
Supports file, inode, and file-system objects

Lets the OS treat all files identically, even if they may be on different devices or file systems

Each file system implements its own functionality for how to use these objects

Linux

File Systems
ext2fs and ext3fs are the most common Linux file
systems
But it supports dozens more

Uses multi-level indexes to store and locate file
data
Up to 3 levels of indirection

Allows for very large files

Still has good performance for small files

Uses (small) 1KB blocks on disk
Allocator places blocks near each other to maximize

read performance

Linux

IPC – Interprocess Communication
Simplest way to send a stream of data from one process to another?

Pipes - simple communication channel between a pair of processes
First process can send messages to second process

Linux sets up the pipe and manages the communication between the processes

Linux

IPC – Interprocess Communication
Signals - used to alert a process of an event
just raises a flag, carries no extra information

Each process has a signal table which tells how it responds to signals

Ctrl+C = send cancel/kill signal to a process (usually)
process can register its own functions to call when a signal is received

Shared Memory - very fast data sharing between processes
Process can map a region from another’s address space

Requires additional mechanisms such as locks to be used safely

Linux

An In-Depth Profile
Questions? 

